Question \# 85540, Math / Real Analysis

Task: Are the following statements true or false? Give reasons for your answers and explain in details.
(a) Every subsequence of the sequence $\left\{1 / n^{2}\right\}$ is convergent.
(b) The function $f(x)=x^{2}+|x|$ is differentiable at $x=-1$.
(c) Every infinite set is an open set.
(d) A necessary condition for a function f to be integrable is that it is continuous.
(e) The sum of the series $\sum_{r=1}^{3 n}(1 / 3 n+2 r)$ as $n \rightarrow \infty$ can be calculated by evaluating the integral $\int_{0}^{3}(1 / 3+2 x) d x$.

Solution:

(a) True. A sequence converges if and only if every subsequence converges. $\left\{1 / n^{2}\right\}$ is convergent \Rightarrow every subsequence of this sequence is convergent.
(b) True. For $x<0$ we have $f(x)=x^{2}-x$ and $f^{\prime}(x)=2 x-1, f^{\prime}(-1)=-3$.
(c) False. The set $\{x:-1 \leqslant x \leqslant 1\}=[-1,1]$ is infinite set but closed in \mathbb{R}.
(d) True. If f is continuous then f is Riemann integrable.
(e) False. $\sum_{r=1}^{3 n}(1 / 3 n+2 r)=1+3 n(3 n+1) \rightarrow \infty$ as $n \rightarrow \infty$. But $\int_{0}^{3}(1 / 3+2 x) d x=10$.

