Answer on Question \#85330 - Math - Complex Analysis

Question

Using the method of residues, evaluate the following integral:

$$
\int_{0}^{2 \pi} \frac{d \theta}{3+2 \cos \theta}
$$

Solution

According to the main theorem of residues

$$
\oint_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{res}_{z=z_{k}} f(z), \quad z \in D
$$

where C is the contour of area D, z_{k} are singular points.
Use the substitution $z=e^{i \theta}$ and use the Euler formulas:

$$
\begin{gathered}
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \text { i.e } \cos \theta=\frac{1}{2}\left(z+\frac{1}{z}\right) ; \\
3+2 \cos \theta=3+z+\frac{1}{z}=\frac{z^{2}+3 z+1}{z} ; \\
d z=i e^{i \theta} d \theta \rightarrow d \theta=\frac{d z}{i z}
\end{gathered}
$$

Segment $[0 ; 2 \pi]$ changing variables can be thought of as changing $\arg z$ points z belonging to the circle. Indeed, the substitution $z=e^{i \theta}$ translates the segment $[0 ; 2 \pi]$ to the circle $|z|=1,0 \leq$ $\arg z \leq 2 \pi$.

We use all the above
$\int_{0}^{2 \pi} \frac{d \theta}{3+2 \cos \theta}=\oint_{|z|=1} \frac{z}{z^{2}+3 z+1} \frac{d z}{i z}=\frac{1}{i} \oint_{|z|=1} \frac{1}{z^{2}+3 z+1} d z$
The singular points of the integrand are the zeros of the denominator, that is, the roots of the equation $z^{2}+3 z+1=0$. These are points $z_{1}=\frac{-3+\sqrt{5}}{2}$ and $z_{2}=\frac{-3-\sqrt{5}}{2}$. Then the denominator can be written as $\left(z-z_{1}\right)\left(z-z_{2}\right)$. Point z_{2} does not belong to the domain $|z|<1$ and point z_{1} belongs and z_{1} is a pole of the 1 st order. Find the residue at the point $z=z_{1}$, which is a pole of the first order:

$$
\begin{gathered}
\operatorname{res}_{z=z_{1}} \frac{1}{\left(z-z_{1}\right)\left(z-z_{2}\right)}=\lim _{z \rightarrow z_{1}} \frac{1}{\left(z-z_{1}\right)\left(z-z_{2}\right)}\left(z-z_{1}\right)=\lim _{z \rightarrow z_{1}} \frac{1}{\left(z-z_{2}\right)}=\frac{1}{z_{1}-z_{2}}=\frac{1}{\sqrt{5}} \\
\frac{1}{i} \oint_{|z|=1} \frac{1}{z^{2}+3 z+1} d z=\frac{1}{i} \cdot 2 \pi i \cdot \operatorname{res}_{z=z_{1}} \frac{1}{\left(z-z_{1}\right)\left(z-z_{2}\right)}=\frac{2 \pi}{\sqrt{5}}
\end{gathered}
$$

Answer:

$$
\int_{0}^{2 \pi} \frac{d \theta}{3+2 \cos \theta}=\frac{2 \pi}{\sqrt{5}}
$$

