Answer to Question \#85328 - Math - Complex Analysis

Locate and name of the singularities of the following functions in the finite z-plane

Question

1. $\ln (z+3 i) / z^{\wedge} 2$

Solution

1. $f(z)=\frac{\ln (z+3 i)}{z^{2}}$

This function has two singularities one at $\mathrm{z}=0$ of order 2 and other at $\mathrm{z}+3 \mathrm{i}=0$ or $\mathrm{z}=-3 \mathrm{i}$ $\mathrm{Z}=0$ is the pole of order 2.

Function of $1 / Z^{\wedge} 2$ has the singularity at $\mathrm{z}=0$, pole of order 2
Function of $\ln (z+3 i)$ has a singularity point at $z=-3 i$, singularity point is branch point.

Question

2. $z^{\wedge} 2-2 z /\left(z^{\wedge} 2+2 z+2\right)$

Solution

2. $f(z)=\frac{z^{2}-2 z}{z^{2}+2 z+2}$
$f(z)=\frac{z(z-2)}{(z+1)^{2}+1}$
$f(z)=\frac{z(z-2)}{(z+1)^{2}-i^{2}}$
$f(z)=\frac{z(z-2)}{(z+1-i)(z+1+i)}$
In order to find pole, take denominator equal to zero

Thus, $z+1-i=0$ and $z+1+i=0$
Or, $z=-1+I$ and $z=-1-i$
Function has a singularity of the pole of order 1 at $z=-1+\mid$ and $z=-1-i$.

