Answer on Question \#85224 - Math - Linear Algebra

Question

Q2. If $A=\left(\begin{array}{lll}1 & 2 & 6 \\ 4 & 11 & 7 \\ 9 & 13 & 3\end{array}\right)$
(a) Find the minors of 1,2 and 6 .
(b) Find the cofactors of 1,2 and 6 .
(c) Evaluate $|\mathrm{A}|$.
(d) A^{-1}

Solution

$A=\left(\begin{array}{lll}1 & 2 & 6 \\ 4 & 11 & 7 \\ 9 & 13 & 3\end{array}\right)$
(a) Find the minors of 1,2 and 6.

Minor of 1 is $M_{11}=\left|\begin{array}{ll}11 & 7 \\ 13 & 3\end{array}\right|=11 \cdot 3-7 \cdot 13=-58$
Minor of 2 is $M_{12}=\left|\begin{array}{ll}4 & 7 \\ 9 & 3\end{array}\right|=4 \cdot 3-7 \cdot 9=-51$
Minor of 6 is $M_{13}=\left|\begin{array}{ll}4 & 11 \\ 9 & 13\end{array}\right|=4 \cdot 13-11 \cdot 9=-47$
(b) Find the cofactors of 1,2 and 6.

Cofactor of $a_{i j}=(-1)^{i+j} M_{i j}$

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} M_{11}=M_{11}=-58 \\
& C_{12}=(-1)^{1+2} M_{12}=-M_{12}=51 \\
& C_{13}=(-1)^{1+3} M_{13}=M_{13}=-47
\end{aligned}
$$

(c) Evaluate $|\mathrm{A}|$.

$$
\begin{gathered}
|A|=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
|A|=1 \cdot(-58)+2 \cdot 51+6 \cdot(-47)=-238
\end{gathered}
$$

(d) A^{-1}

We can find inverse matrix by using formula

$$
A^{-1}=\frac{1}{|A|} C^{T}
$$

where C is a cofactor matrix

$$
C=\left(\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right)
$$

Find cofactors of all the elements

$$
\begin{gathered}
C_{21}=(-1)^{2+1}\left|\begin{array}{ll}
2 & 6 \\
13 & 3
\end{array}\right|=-(2 \cdot 3-6 \cdot 13)=72 \\
C_{22}=(-1)^{2+2}\left|\begin{array}{ll}
1 & 6 \\
9 & 3
\end{array}\right|=(1 \cdot 3-6 \cdot 9)=-51 \\
C_{23}=(-1)^{2+3}\left|\begin{array}{ll}
1 & 2 \\
9 & 13
\end{array}\right|=-(13-2 \cdot 9)=5 \\
C_{31}=(-1)^{3+1}\left|\begin{array}{ll}
2 & 6 \\
11 & 7
\end{array}\right|=(2 \cdot 7-6 \cdot 11)=-52 \\
C_{32}=(-1)^{3+2}\left|\begin{array}{ll}
1 & 6 \\
4 & 7
\end{array}\right|=-(7-6 \cdot 4)=17 \\
C_{33}=(-1)^{3+3}\left|\begin{array}{ll}
1 & 2 \\
4 & 11
\end{array}\right|=(11-2 \cdot 4)=3
\end{gathered}
$$

Construct Cofactor Matrix

$$
C=\left(\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right)=\left(\begin{array}{lll}
-58 & 51 & -47 \\
72 & -51 & 5 \\
-52 & 17 & 3
\end{array}\right)
$$

Transpose of the cofactor matrix (adjugate matrix)

$$
C^{T}=\left(\begin{array}{lll}
-58 & 72 & -52 \\
51 & -51 & 17 \\
-47 & 5 & 3
\end{array}\right)
$$

Thus $A^{-1}=\frac{-1}{238}\left(\begin{array}{lll}-58 & 72 & -52 \\ 51 & -51 & 17 \\ -47 & 5 & 3\end{array}\right)=\left(\begin{array}{lll}58 / 238 & -72 / 238 & 52 / 238 \\ -51 / 238 & 51 / 238 & -17 / 238 \\ 47 / 238 & -5 / 238 & -3 / 238\end{array}\right)$

Answer:

(a) The minors of 1,2 and 6 are $M_{11}=-58, M_{12}=-51, M_{13}=-47$
(b) The cofactors of 1,2 and 6 are $C_{11}=-58, C_{12}=51, C_{13}=-47$
(c) $|A|=-238$
(d) $A^{-1}=\left(\begin{array}{lll}58 / 238 & -72 / 238 & 52 / 238 \\ -51 / 238 & 51 / 238 & -17 / 238 \\ 47 / 238 & -5 / 238 & -3 / 238\end{array}\right)$.

Answer provided by https://www.AssignmentExpert.com

