Answer on Question \#85216 - Math - Abstract Algebra

Question

If ω be the imaginary cube root of unity, show that the set $\left\{1, w, w^{2}\right\}$ is a cyclic group of order 3 with respect to multiplication.

Solution

1) There is a defined closed binary operation:
$w^{m} * w^{n}=w^{m+n}=w^{(m+n) \% 3} \in\left\{1, w, w^{2}\right\}$
2) The operation is associative:
$w^{m} * w^{n}=w^{m+n}=w^{n+m}=w^{n} * w^{m}$
3) There is a unit element:
$1 * w^{n}=w^{n} * 1=w^{n}$
3) All elements have inverse:
$w^{n} * w^{-n}=w^{n-n}=w^{0}=1$
4) There is a generator (of order 3):
$w * w * w=w^{3}=1, w * w * w * w=w^{4}=w, w * w=w^{2}$
Therefore, it follows from 1)-4) that the set $\left\{1, w, w^{2}\right\}$ is a group with respect to multiplication. By 5), this group is cyclic of order 3.
