Answer on Question \#85214 - Math - Linear Algebra

Question

1. a) Show that the eigenvalues of a Hermitian matrix are real.

Solution

Let λ be eigenvalue of a hermitian matrix A. We have:
$A x=\lambda x$
for some $x \neq 0$.
Since A is hermitian,
$\langle A u, v\rangle=\langle u, A v\rangle$ (1)
for all vectors u, v.
Then
$\langle A x, x\rangle=\langle\lambda x, x\rangle=\lambda\langle x, x\rangle$,
$\langle x, A x\rangle=\langle x, \lambda x\rangle=\bar{\lambda}\langle x, x\rangle$.
From (1) we have then:
$\lambda\langle x, x\rangle=\bar{\lambda}\langle x, x\rangle$
Since $x \neq 0,\langle x, x\rangle \neq 0$, from which
$\lambda=\bar{\lambda}$,
$\operatorname{Re} \lambda+i \operatorname{Im} \lambda=\operatorname{Re} \lambda-i \operatorname{Im} \lambda$,
$\operatorname{Im} \lambda=0$,
which means λ is real.

