Answer on Question #85214 – Math – Linear Algebra

Question

1. a) Show that the eigenvalues of a Hermitian matrix are real.

Solution

Let λ be eigenvalue of a hermitian matrix *A*. We have: $Ax = \lambda x$ for some $x \neq 0$. Since *A* is hermitian, $\langle Au, v \rangle = \langle u, Av \rangle$ (1) for all vectors u, v. Then $\langle Ax, x \rangle = \langle \lambda x, x \rangle = \lambda \langle x, x \rangle,$ $\langle x, Ax \rangle = \langle x, \lambda x \rangle = \overline{\lambda} \langle x, x \rangle$. From (1) we have then: $\lambda \langle x, x \rangle = \overline{\lambda} \langle x, x \rangle$ Since $x \neq 0$, $\langle x, x \rangle \neq 0$, from which $\lambda = \overline{\lambda},$ $\operatorname{Re}\lambda + i\operatorname{Im}\lambda = \operatorname{Re}\lambda - i\operatorname{Im}\lambda$, $\mathrm{Im}\lambda = 0$, which means λ is real.

Answer provided by https://www.AssignmentExpert.com