## Answer on Question \#85174 - Math - Differential Equations <br> Question

Show that: $J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cdot \cos (x)$

## Solution

We know that

$$
\begin{aligned}
& \quad J_{k}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\cdot \Gamma(n+k+1)} \cdot\left(\frac{x}{2}\right)^{2 n+k} \Rightarrow J_{-\frac{1}{2}}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\cdot \Gamma\left(n-\frac{1}{2}+1\right)} \cdot\left(\frac{x}{2}\right)^{2 n-\frac{1}{2}}= \\
& =\sqrt{\frac{2}{x}} \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\cdot \Gamma\left(n+\frac{1}{2}\right)} \cdot\left(\frac{x}{2}\right)^{2 n}=\left\{\Gamma\left(n+\frac{1}{2}\right)=\frac{1 \cdot 3 \cdot \ldots \cdot(2 n-1)}{2^{n}} \sqrt{\pi}=\frac{(2 n-1)!!}{2^{n}} \sqrt{\pi}\right\}= \\
& =\sqrt{\frac{2}{x}} \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\cdot \frac{(2 n-1)!!}{2^{n}} \sqrt{\pi}} \cdot \frac{x^{2 n}}{2^{2 n}}=\sqrt{\frac{2}{\pi x}} \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} \cdot n!\cdot(2 n-1)!!} \cdot x^{2 n}= \\
& = \\
& =\left\{2^{n} \cdot n!\cdot(2 n-1)!!=(2 n)!\right\}=\sqrt{\frac{2}{\pi x}} \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \cdot x^{2 n}=\left\{\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \cdot x^{2 n}=\cos (x)\right\}= \\
& = \\
& \sqrt{\frac{2}{\pi x}} \cdot \cos (x) .
\end{aligned}
$$

Answer: $J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cdot \cos (x)$.

