## Answer on Question \#85070 - Math - Linear Algebra

## Question

Apply Cramer's rule to solve the equation.
$2 x+y+z=4$
$x-y+2 z=2$
$3 x-2 y-z=0$

## Solution

Constructing coefficient matrix:

$$
\begin{array}{ccc}
2 & 1 & 1 \\
1 & -1 & 2 \\
3 & -2 & -1
\end{array}
$$

Calculating determinant:
$D=2\left|\begin{array}{cc}-1 & 2 \\ -2 & -1\end{array}\right|-1\left|\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right|+1\left|\begin{array}{cc}1 & -1 \\ 3 & -2\end{array}\right|=10+7+1=18$
Obtaining a matrix from, changing $x$ column to the values on the right side of the equations given:

$$
\begin{array}{ccc}
4 & 1 & 1 \\
2 & -1 & 2 \\
0 & -2 & -1
\end{array}
$$

Calculating determinant:

$$
D_{x}=4\left|\begin{array}{cc}
-1 & 2 \\
-2 & -1
\end{array}\right|-1\left|\begin{array}{cc}
2 & 2 \\
0 & -1
\end{array}\right|+1\left|\begin{array}{cc}
2 & -1 \\
0 & -2
\end{array}\right|=20+2-4=18
$$

Obtaining a matrix from, changing y column to the values on the right side of the equations given:

$$
\begin{array}{ccc}
2 & 4 & 1 \\
1 & 2 & 2 \\
3 & 0 & -1
\end{array}
$$

Calculating determinant:

$$
D_{y}=2\left|\begin{array}{cc}
2 & 2 \\
0 & -1
\end{array}\right|-4\left|\begin{array}{cc}
1 & 2 \\
3 & -1
\end{array}\right|+1\left|\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right|=-4+28-6=18
$$

Obtaining a matrix from, changing $z$ column to the values on the right side of the equations given:

$$
\begin{array}{ccc}
2 & 1 & 4 \\
1 & -1 & 2 \\
3 & -2 & 0
\end{array}
$$

Calculating determinant:

$$
D_{z}=2\left|\begin{array}{ll}
-1 & 2 \\
-2 & 0
\end{array}\right|-1\left|\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right|+4\left|\begin{array}{ll}
1 & -1 \\
3 & -2
\end{array}\right|=8+6+4=18
$$

Finding the values of $\mathrm{x}, \mathrm{y}$ and z :
$x=\frac{D_{x}}{D}=\frac{18}{18}=1$
$y=\frac{D_{y}}{D}=\frac{18}{18}=1$
$z=\frac{D_{z}}{D}=\frac{18}{18}=1$
Answer: $x=y=z=1$.

Answer provided by https://www.AssignmentExpert.com

