ANSWER to Question \#84970 - Math - Calculus Question

Find, by the first principle, the derivative of $f: R \rightarrow R$ defined by $f(x)=x^{\wedge} 3-1$ at a point $x 0$. Hence, find the equations of the tangent and normal to its curve at the point ($-2,-9$).

Solution

$$
f(x)=x^{3}-1
$$

differentiation from first principal at $x=x_{0}$

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} & =\lim _{h \rightarrow 0} \frac{\left(x_{0}+h\right)^{3}-1-\left(x_{0}{ }^{3}-1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x_{0}+h\right)^{3}-x_{0}^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(\left(x_{0}+h\right)-x_{0}\right)\left(\left(x_{0}+h\right)^{2}+\left(x_{0}+h\right) x_{0}+x_{0}^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(\left(x_{0}+h\right)^{2}+\left(x_{0}+h\right) x_{0}+x_{0}^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0}\left(\left(x_{0}+h\right)^{2}+\left(x_{0}+h\right) x_{0}+x_{0}^{2}\right) \\
& =\left(\left(x_{0}+0\right)^{2}+\left(x_{0}+0\right) x_{0}+x_{0}^{2}\right) \\
& =3 x_{0}^{2}
\end{aligned}
$$

Slope of tangent at $(-2,-9)=f^{\prime}(-2)=3(-2)^{2}=12$

Hence equation of tangent at $(-2,-9)$ will be $y+9=12(x+2)$ i.e. $y=12 x+15$
Slope of normal at $(-2,-9)=-1 / 12$
Hence equation of normal at $(-2,-9)$ will be $y+9=(-1 / 12)(x+2)$ i.e. $12 y+108=-x-2$
i.e. $12 \mathrm{y}=-\mathrm{x}-110$

Answer: $f^{\prime}\left(x_{0}\right)=3 x_{0}^{2} ; y=12 x+15 ; 12 y=-x-110$.

