Answer on Question \#84948 - Math - Differential Equations

Question

Solve the following differential equation

$$
x p^{2}-2 y p+a x=0
$$

Solution

$$
\begin{equation*}
x p^{2}-2 y p+a x=0 \tag{*}
\end{equation*}
$$

$2 y p=x p^{2}+a x$
$y=\frac{x p^{2}+a x}{2 p}$
$y=\frac{x p}{2}+\frac{a x}{2 p}$
Differentiate both sides with respect to x
$\frac{d y}{d x}=\frac{1}{2}\left(p+x \frac{d p}{d x}\right)+\frac{a}{2}\left(\frac{1}{p}-\frac{x}{p^{2}} \frac{d p}{d x}\right)$
Then
$p=\frac{p}{2}+\frac{x}{2} \cdot \frac{d p}{d x}+\frac{a}{2 p}-\frac{a x}{2 p^{2}} \cdot \frac{d p}{d x}$
$\frac{d p}{d x}\left(\frac{x}{2}-\frac{a x}{2 p^{2}}\right)=\frac{p}{2}-\frac{a}{2 p}$
$x \frac{d p}{d x}\left(\frac{1}{2}-\frac{a}{2 p^{2}}\right)=p\left(\frac{1}{2}-\frac{a}{2 p^{2}}\right)$
$x \frac{d p}{d x}=p, \frac{1}{2}-\frac{a}{2 p^{2}} \neq 0$
$\frac{d p}{p}=\frac{d x}{x}$
Integrate
$\ln |p|=\ln |x|+\ln c$
$p=c x$
Substitute $p=c x$ in (*)
$x(c x)^{2}-2 y(c x)+a x=0$
$c^{2} x^{3}+x(-2 y c+a)=0=>c^{2} x^{2}-2 y c+a=0=>2 y=c x^{2}+\frac{a}{c}$
The general solution of the differential equation

$$
2 y=c x^{2}+\frac{a}{c}
$$

If $\frac{1}{2}-\frac{a}{2 p^{2}}=0$, then $p=-\sqrt{a}$ or $p=\sqrt{a}$

Substitute $p=-\sqrt{a}$ in $(*)$

$$
\begin{gathered}
a x+2 \sqrt{a} y+a x=0 \\
y=-\sqrt{a} x
\end{gathered}
$$

Substitute $p=\sqrt{a}$ in ($*$)

$$
\begin{gathered}
a x-2 \sqrt{a} y+a x=0 \\
y=\sqrt{a} x
\end{gathered}
$$

The solutions of the given differential equation are

$$
2 y=c x^{2}+\frac{a}{c}, \text { or } y=-\sqrt{a} x, \text { or } y=\sqrt{a} x
$$

Answer: $2 y=c x^{2}+\frac{a}{c}, y=-\sqrt{a} x, y=\sqrt{a} x$.

