Answer on Question #84948 – Math – Differential Equations

Question

Solve the following differential equation $xp^2 - 2yp + ax = 0$

Solution

$$xp^{2} - 2yp + ax = 0$$
(*)

$$2yp = xp^{2} + ax$$

$$y = \frac{xp^{2} + ax}{2p}$$

$$y = \frac{xp}{2} + \frac{ax}{2p}$$
Differentiate both sides with respect to x

$$\frac{dy}{dx} = \frac{1}{2}\left(p + x\frac{dp}{dx}\right) + \frac{a}{2}\left(\frac{1}{p} - \frac{x}{p^{2}}\frac{dp}{dx}\right)$$
Then

$$p = \frac{p}{2} + \frac{x}{2} \cdot \frac{dp}{dx} + \frac{a}{2p} - \frac{ax}{2p^{2}} \cdot \frac{dp}{dx}$$

$$\frac{dp}{dx}\left(\frac{x}{2} - \frac{ax}{2p^{2}}\right) = \frac{p}{2} - \frac{a}{2p}$$

$$x\frac{dp}{dx}\left(\frac{1}{2} - \frac{a}{2p^{2}}\right) = p\left(\frac{1}{2} - \frac{a}{2p^{2}}\right)$$

$$x\frac{dp}{dx} = p, \quad \frac{1}{2} - \frac{a}{2p^{2}} \neq 0$$

$$\frac{dp}{p} = \frac{dx}{x}$$
Integrate

$$\ln|p| = \ln|x| + \ln c$$

$$p = cx$$
Substitute $p = cx$ in (*)

$$x(cx)^{2} - 2y(cx) + ax = 0$$

$$c^{2}x^{3} + x(-2yc + a) = 0 => c^{2}x^{2} - 2yc + a = 0 => 2y = cx^{2} + \frac{a}{c}$$
The general solution of the differential equation

 $2y = cx^{2} + \frac{a}{c}$ If $\frac{1}{2} - \frac{a}{2p^{2}} = 0$, then $p = -\sqrt{a}$ or $p = \sqrt{a}$ Substitute $p = -\sqrt{a}$ in (*)

$$ax + 2\sqrt{a}y + ax = 0$$
$$y = -\sqrt{a}x$$

Substitute $p = \sqrt{a}$ in (*)

$$ax - 2\sqrt{a}y + ax = 0$$
$$y = \sqrt{a}x$$

The solutions of the given differential equation are

$$2y = cx^{2} + \frac{a}{c}, \text{ or } y = -\sqrt{a}x, \text{ or } y = \sqrt{a}x$$

Answer: $2y = cx^{2} + \frac{a}{c}, y = -\sqrt{a}x, y = \sqrt{a}x$.