Question \# 84927, Math / Calculus

Task: Trace the curve $y^{2}=(x+1)(x-1)^{2}$ by showing all the properties you use to trace it.

Solution:

Of course, we have the symmetry with respect to the horizontal axis, because we have $y= \pm|x-1| \sqrt{x+1}$. Consider upper part $y=|x-1| \sqrt{x+1}$.

We have $y=0$ if $x= \pm 1$. And if $x=0$, then $y=1$.
Let $x \in[-1,1]$. Then $y=(1-x) \sqrt{x+1}, y^{\prime}=\frac{1}{2 \sqrt{x+1}}-\frac{x}{2 \sqrt{x+1}}-\sqrt{x+1} . y^{\prime}=0 \Rightarrow x=-1 / 3$. So, y increases for $x \in[-1,-1 / 3]$ and decreases for $x \in[-1 / 3,1] . y(-1 / 3)=4 / 3 \sqrt{2 / 3}$ is extremum (maximum) on $[-1,1] . y^{\prime} \rightarrow \infty$ if $x \rightarrow-1$, so we have vertical tangent at $x=-1$.

Let $x \in(1, \infty)$. Then $y=(x-1) \sqrt{x+1}, y^{\prime}=-\frac{1}{2 \sqrt{x+1}}+\frac{x}{2 \sqrt{x+1}}+\sqrt{x+1} . y^{\prime}>0$, so y increases for $x \in(1, \infty)$.

Now we can trace the curve $y^{2}=(x+1)(x-1)^{2}$.

