Answer on Question \#84924 - Math - Calculus

Question

Examine for maximum and minimum values of the function $f(x)=2 x^{\wedge} 3-15 x^{\wedge} 2+36 x+10$

Solution

$$
f(x)=2 x^{3}-15 x^{2}+36 x+10
$$

Find $f^{\prime}(x)$ using the power rule.

$$
f^{\prime}(x)=6 x^{2}-30 x+36
$$

The local minima and maxima will occur when the derivative equals 0 :

$$
6 x^{2}-30 x+36=0
$$

Divide this equation by 6

$$
x^{2}-5 x+6=0
$$

Solve this equation

$$
\begin{gathered}
D=(-5)^{2}-4 \cdot 1 \cdot 6=25-24=1 \\
\sqrt{D}=\sqrt{1}=1 \\
x_{1}=\frac{5+1}{2 \cdot 1}=3, \quad x_{2}=\frac{5-1}{2 \cdot 1}=2
\end{gathered}
$$

These are the two points at which maxima/minima could occur.
We identify these points using the Second Derivative Test:
Find the second derivative of the function. Then, find the sign of it at each point.
If $f^{\prime \prime}(a)<0$ and $f^{\prime}(a)=0$, then there is a local maximum at $x=a$.
If $f^{\prime \prime}(a)>0$ and $f^{\prime}(a)=0$, then there is a local minimum at $x=a$.

We get

$$
\begin{gathered}
f^{\prime}(x)=6 x^{2}-30 x+36 \\
f^{\prime \prime}(x)=12 x-30 \\
f^{\prime \prime}(2)=12 \cdot 2-30=-6<0
\end{gathered}
$$

Since this is <0 there is a local maximum at $x=2$.

$$
f^{\prime \prime}(3)=12 \cdot 3-30=6>0
$$

Since this is >0 there is a local minimum at $x=3$.
Find the values of the function at these points

$$
\begin{gathered}
f_{\max }=f(2)=2 \cdot 2^{3}-15 \cdot 2^{2}+36 \cdot 2+10=16-60+72+10=38 \\
f_{\min }=f(3)=2 \cdot 3^{3}-15 \cdot 3^{2}+36 \cdot 3+10=54-135+108+10=37
\end{gathered}
$$

Answer: $\quad f_{\max }=f(2)=38, \quad f_{\min }=f(3)=37$.

