ANSWER on Question \#84877 - Math - Differential Equations

QUESTION

Under certain condition cane sugar in water is converted into dextrose at a rate which is proportional to the amount unconverted at any time. If of 75 gm , at time $t=0,8 \mathrm{gm}$, are converted during the first 30 minutes, the amount converted in one and half hours is

SOLUTION

Let

$$
C-\text { is converted sugar cane } \rightarrow\left\{\begin{array}{c}
\frac{d C}{d t} \text { is conversion rate } \\
(75-C) \text { is unconverted sugar cane }
\end{array}\right.
$$

Then, by the condition of the problem

$$
\frac{d C}{d t} \sim(75-C) \rightarrow \frac{d C}{d t}=k(75-C), \quad \text { where } k \text { is the coefficient of proportionality }
$$

Then,

$$
\begin{gathered}
\frac{d C}{d t}=k(75-C) \left\lvert\, \times\left(\frac{d t}{75-C}\right) \rightarrow \frac{d C}{75-C}=k d t \rightarrow \int \frac{d C}{75-C}=\int k d t \rightarrow\right. \\
-\ln |75-C|=k t-\ln |A||\times(-1) \rightarrow \ln | 75-C|=-k t+\ln | A \mid \rightarrow \\
e^{\ln |75-C|}=e^{-k t+\ln |A|} \rightarrow 75-C=A \cdot e^{-k t} \rightarrow C(t)=75-A \cdot e^{-k t}
\end{gathered}
$$

By the condition of the problem:

$$
\begin{gathered}
C(0)=0=75-A \cdot e^{-k \cdot 0} \rightarrow 75-A=0 \rightarrow A=75 \\
C(t)=75-75 \cdot e^{-k t} \rightarrow C(t)=75 \cdot\left(1-e^{-k t}\right) \\
C(30)=8=75 \cdot\left(1-e^{-k \cdot 30}\right) \rightarrow 1-e^{-k \cdot 30}=\frac{8}{75} \rightarrow e^{-30 k}=1-\frac{8}{75} \rightarrow \\
e^{-30 k}=\frac{75-8}{75} \rightarrow \ln \left|e^{-30 k}\right|=\ln \left|\frac{67}{75}\right| \rightarrow-30 k=\ln \left|\frac{67}{75}\right| \rightarrow k=-\frac{1}{30} \cdot \ln \left|\frac{67}{75}\right| \rightarrow \\
k=\ln \left|\left(\frac{67}{75}\right)^{-1 / 30}\right|=\ln \left|\left(\frac{75}{67}\right)^{1 / 30}\right| \rightarrow k=\ln \left|\left(\frac{75}{67}\right)^{1 / 30}\right|
\end{gathered}
$$

Then,

$$
C(t)=75 \cdot\left(1-e^{-t \cdot \ln \left|\left(\frac{75}{67}\right)^{\frac{1}{30}}\right|}\right)=75 \cdot\left(1-e^{\ln \left|\left(\frac{75}{67}\right)^{\frac{-t}{30}}\right|}\right)=75 \cdot\left(1-\left(\frac{75}{67}\right)^{\frac{-t}{30}}\right) \rightarrow
$$

Conclusion,

$$
C(t)=75 \cdot\left(1-\left(\frac{67}{75}\right)^{\frac{t}{30}}\right)
$$

The amount converted in one and half hours is

$$
C(90)=75 \cdot\left(1-\left(\frac{67}{75}\right)^{\frac{90}{30}}\right)=75 \cdot\left(1-\left(\frac{67}{75}\right)^{3}\right)=\frac{121112}{5625} \approx 21.53(\mathrm{gm})
$$

ANSWER:

$$
\begin{gathered}
C(t)=75 \cdot\left(1-\left(\frac{67}{75}\right)^{\frac{t}{30}}\right) \\
C(90)=\frac{121112}{5625} \approx 21.53(\mathrm{gm})
\end{gathered}
$$

