Answer on Question \#84873 - Math - Geometry

Question

Find an area of the composite figure with 6 sides, if I only have 4 measurements to the sides.

Solution

Consider a composite figure with 6 sides $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$. This figure can be divided into four triangles as shown in figure 1:

If we only have 4 sides, for example, a_{1}, a_{2}, a_{3} and a_{4}, then an area S of $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ will depend on angles between the sides of the figure. If we have these angles, then we can find unknown sides and the area of each triangle:

1) From the cosine theorem in triangles $A_{1} A_{2} A_{3}$ and $A_{3} A_{4} A_{5}$:

$$
\begin{aligned}
& x=\sqrt{\left(a 1^{2}+a 2^{2}-2 a 1 a 2 \cos \varphi 2\right)} \\
& y=\sqrt{\left(a 3^{2}+a 4^{2}-2 a 3 a 4 \cos \varphi 4\right)}
\end{aligned}
$$

2) From the sine theorem in triangles $A_{1} A_{2} A_{3}$ and $A_{3} A_{4} A_{5}$:

$$
\begin{aligned}
& \mathrm{x} / \sin \varphi_{2}=\mathrm{a}_{1} / \sin \theta_{2}=\mathrm{a}_{2} / \sin \theta_{1} ; \\
& \theta_{2}=\arcsin \left(\mathrm{a}_{1} / \mathrm{x} * \sin \varphi_{2}\right) ;
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{1}=\arcsin \left(a_{2} / x * \sin \varphi_{2}\right) ; \\
& y / \sin \varphi_{4}=a_{3} / \sin \theta_{4}=a_{4} / \sin \theta_{3} ; \\
& \theta_{3}=\arcsin \left(a_{4} / y * \sin \varphi_{4}\right) ; \\
& \theta_{4}=\arcsin \left(a_{3} / y * \sin \varphi_{4}\right) ; \\
& \alpha_{3}=\varphi_{3}-\left(\theta_{2}+\theta_{3}\right) .
\end{aligned}
$$

3) From the cosine theorem in the triangle $\mathrm{A}_{1} \mathrm{~A}_{3} \mathrm{~A}_{5}$:

$$
z=\sqrt{\left(\mathrm{x}^{2}+\mathrm{y} 2^{2}-2 \mathrm{xy} \cos \alpha 3\right)} .
$$

4) From the sine theorem in the triangle $A_{1} A_{3} A_{5}$:

$$
\begin{aligned}
& \mathrm{x} / \sin \alpha_{5}=\mathrm{y} / \sin \alpha_{1}=\mathrm{z} / \sin \alpha_{3} ; \\
& \alpha_{1}=\arcsin \left(\mathrm{y} / \mathrm{z}^{*} \sin \alpha_{3}\right) ; \\
& \alpha_{5}=\arcsin \left(\mathrm{x} / \mathrm{z}^{*} \sin \alpha_{3}\right) ; \\
& \theta_{5}=\varphi_{5}-\left(\theta_{4}+\alpha_{5}\right) ; \\
& \theta_{6}=\varphi_{1}-\left(\theta_{1}+\alpha_{1}\right) .
\end{aligned}
$$

5) From the sine theorem in the triangle $A_{1} A_{5} A_{6}$:

$$
\begin{aligned}
& a_{6} / \sin \theta_{5}=a_{5} / \sin \theta_{6}=z / \sin \varphi_{6} ; \\
& a_{5}=z^{*} \sin \theta_{6} / \sin \varphi_{6} ; \\
& a_{6}=z^{*} \sin \theta_{5} / \sin \varphi_{6} .
\end{aligned}
$$

6) Find the area of the composite figure:
$\mathrm{S}_{1}=1 / 2 * \mathrm{a}_{1} \mathrm{a}_{2} \sin \varphi_{2} ;$
$S_{2}=1 / 2 *$ a $_{3} a_{4} \sin \varphi 4 ;$
$S_{3}=1 / 2 * x y \sin \alpha_{3} ;$
$\mathrm{S}_{4}=1 / 2 *{ }^{2} \mathrm{a}_{6} \sin \varphi_{6} ;$
$\mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\mathrm{S}_{4}$.
