Answer on Question \#84833 - Math - Calculus

Question

Find the intervals in R over which definite integral (-1 to x) of $(t+1)^{\wedge} 3 . e^{\wedge} t . d t$ is decreasing.

Solution

Let $f(x)=\int_{-1}^{x}(t+1)^{3} e^{t} d t$. Then $f^{\prime}(x)=(x+1)^{3} e^{x}$.
In order to find the interval over which the function $f(x)$ decreases, it is necessary to solve the inequality $f^{\prime}(x)<0$. That is $(x+1)^{3} e^{x}<0$.
Since $e^{x}>0$ for any x , then $f^{\prime}(x)<0$ for $(x+1)^{3}<0$, i.e. for $x<-1$.
Answer: $(-\infty ;-1)$ is an interval over which the definite integral $\int_{-1}^{x}(t+1)^{3} e^{t} d t$ is decreasing.

