Answer on Question \#84734 - Math - Algebra

Question

The following proof seems to show that $1=2$ explain the error clearly

$$
\begin{aligned}
& a=b \\
& a^{2}=a b \\
& a^{2}-b^{2}=a b-b^{2} \\
& (a-b)(a+b)=b(a-b) \\
& a+b=b \\
& b+b=b \\
& 2 b=b \\
& 2=1
\end{aligned}
$$

Solution

If $a=b$ then:
$a^{2}=a b$ this equation is true
$a^{2}-b^{2}=a b-b^{2}$ this equation is true
$(a-b)(a+b)=b(a-b)$ this equation is true

$$
\begin{aligned}
& (a-b)(a+b)=b(a-b) \\
& \frac{(a-b)(a+b)}{(a-b)}=\frac{b(a-b)}{(a-b)}
\end{aligned}
$$

$a-b=a-a=0$. Impossible to divide by zero!!! (it is the main error)

$$
a+b=b
$$

$a+b=b$ this equation is false!
$b+b=b$
$2 b=b$
$2=1$
Answer: the main error was a division by zero.

