

Answer on Question #84732 – Math – Algebra

Question

The equation $-2x^2=13x-45$ is not ready for factoring and solving for x explain why. What qualities does it need so that it is ready? Explain how to get. Started solving x.

Solution

Quadratic Equation:

$$ax^2 + \underline{bx} + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$D = b^2 - 4ac$$

D is the determinant of this equation

$$-2x^2=13x-45$$

$$2x^2+13x-45=0 \quad \Rightarrow \quad a=2, \ b=13, \ c=-45$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-13 \pm \sqrt{13^2 - 4 * 2 * (-45)}}{2 * 2} = \frac{-13 \pm \sqrt{529}}{4}$$

	$D > 0$	$D = 0$	$D < 0$
$a > 0$			
$a < 0$			

When Determinant(D)=0, then one real root

When $D > 0$, then two real roots

When $D = 0$, then no real root.

$$D = \sqrt{b^2 - 4ac} \Rightarrow b^2 - 4ac \geq 0$$

For example,

$$2x^2 + 13x + 45 = 0 \quad \Rightarrow \quad a=2, b=13, c=+45$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-13 \pm \sqrt{13^2 - 4 * 2 * (45)}}{2 * 2} = \frac{-13 \pm \sqrt{-191}}{4}$$

If $D < 0$, then $\sqrt{-191}$ is a complex number and the equation does not have real roots.