Answer to Question \#84682 - Math - Algebra

Question

A rectangular countertop has an area of $15 \mathrm{ft}{ }^{\wedge} 2$. If the width is 3.5 ft shorter than the length, what are the dimensions of the countertop? Write an equation and solve.

Solution

The area of rectangular countertop is $15 \mathrm{ft}^{2}$.
Let the length of the top be $x \mathrm{ft}$ and the width of the top is given as 3.5 ft shorter than the length.

So the width is $=(x-3.5) \mathrm{ft}$
Then the area of the countertop becomes:
Area $=$ Length \times Width $=x \times(x-3.5)=x^{2}-3.5 x$
As per the data given,
Area $=15 \mathrm{ft}^{2}$
$x^{2}-3.5 x=15$
$x^{2}-3.5 x-15=0$
The above is a quadratic equation is x.
This is equivalent to:

$$
\begin{aligned}
& x^{2}-\frac{7}{2} x-15=0 \\
& 2 x^{2}-7 x-30=0 \\
& 2 x^{2}-12 x+5 x-30=0 \\
& 2 x(x-6)+5(x-6)=0
\end{aligned}
$$

$(x-6)(2 x+5)=0$
Since the length x must be greater than zero, we have:
$x=6$
Thus the length of the countertop is 6 ft and the width is $(6-3.5)=2.5 \mathrm{ft}$.
Hence the dimensions of the countertop are 6 ft and 2.5 ft .
Answer: 6 ft and $2.5 \mathrm{ft}, x^{2}-3.5 x=15$.

