Answer on Question \#84642 - Math - Linear Algebra

Question

How to obtain the eigenvalues and eigenvectors of the matrix: $M=\left(\begin{array}{lll}2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$

Solution

In such problems, we first find the eigenvalues of the matrix.
Finding eigenvalues
To do this, we find the values of λ which satisfy the characteristic equation of the matrix M, namely those values of λ for which
$\operatorname{det}(M-\lambda I)=0$
where I is the 3×3 identity matrix

$$
I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Form the matrix $M-\lambda I$:

$$
M-\lambda I=\left(\begin{array}{lll}
2 & 3 & 0 \\
3 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)-\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)=\left(\begin{array}{lll}
2-\lambda & 3 & 0 \\
3 & 2-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right)
$$

Calculate $\operatorname{det}(M-\lambda I)$
$\operatorname{det}(M-\lambda I)=\left|\begin{array}{lll}2-\lambda & 3 & 0 \\ 3 & 2-\lambda & 0 \\ 0 & 0 & 1-\lambda\end{array}\right|=(1-\lambda)\left|\begin{array}{ll}2-\lambda & 3 \\ 3 & 2-\lambda\end{array}\right|=(1-\lambda)\left((2-\lambda)^{2}-3^{2}\right)=$
$(1-\lambda)\left((2-\lambda)^{2}-3^{2}\right)=(1-\lambda)(2-\lambda-3)(2-\lambda+3)=-(1-\lambda)(1+\lambda)(5-\lambda)$
The solutions of the equation $\operatorname{det}(M-\lambda I)=-(1-\lambda)(1+\lambda)(5-\lambda)=0$ are

$$
\lambda_{1}=-1, \quad \lambda_{2}=1, \quad \lambda_{1}=5
$$

Finding eigenvectors
We can find the eigenvectors by Gaussian Elimination.
STEP 1: For each eigenvalue λ, we have $(M-\lambda I) X=0$ where X is the eigenvector associated with eigenvalue λ

STEP 2: Find X by Gaussian elimination. That is, convert the augmented matrix.

$$
(M-\lambda I, 0)
$$

to row echelon form and solve the resulting linear system by back substitution.

Case 1: $\lambda=-1$. We have to find vectors X which satisfy $(M-\lambda I) X=0$.
First, form the matrix $M-(-1) \cdot I=M+I$

$$
M+I=\left(\begin{array}{lll}
2+1 & 3 & 0 \\
3 & 2+1 & 0 \\
0 & 0 & 1+1
\end{array}\right)=\left(\begin{array}{lll}
3 & 3 & 0 \\
3 & 3 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Construct the augmented matrix ($M-\lambda I, 0$) and convert it to row echelon form

$$
\left(\begin{array}{lll|l}
3 & 3 & 0 & 0 \\
3 & 3 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Rewriting this augmented matrix as a linear system gives

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=0 \\
x_{3}=0
\end{array}\right.
$$

So the form of eigenvector X_{1} is given by:

$$
X_{1}=\left(\begin{array}{l}
x_{1} \\
-x_{1} \\
0
\end{array}\right)=x_{1}\left(\begin{array}{l}
1 \\
-1 \\
0
\end{array}\right)=C_{1}\left(\begin{array}{l}
1 \\
-1 \\
0
\end{array}\right)
$$

for any real number $C_{1} \neq 0$
Case 2: $\lambda=1$

$$
M-I=\left(\begin{array}{lll}
1 & 3 & 0 \\
3 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Construct the augmented matrix ($M-\lambda I, 0$) and convert it to row echelon form

$$
\left(\begin{array}{lll|l}
1 & 3 & 0 & 0 \\
3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 3 & 0 & 0 \\
0 & -8 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 3 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Rewriting this augmented matrix as a linear system gives

$$
\left\{\begin{array}{l}
x_{1}=0, \\
x_{2}=0 \\
x_{3}=x_{3}
\end{array}\right.
$$

So the form of eigenvector X_{2} is given by:

$$
X_{2}=\left(\begin{array}{l}
0 \\
0 \\
x_{3}
\end{array}\right)=x_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=C_{2}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

for any real number $C_{2} \neq 0$.

Case 3: $\lambda=5$.

$$
M-5 I=\left(\begin{array}{lll}
2-5 & 3 & 0 \\
3 & 2-5 & 0 \\
0 & 0 & 1-5
\end{array}\right)=\left(\begin{array}{lll}
-3 & 3 & 0 \\
3 & -3 & 0 \\
0 & 0 & -4
\end{array}\right)
$$

Construct the augmented matrix ($M-\lambda I, 0$) and convert it to row echelon form

$$
\left(\begin{array}{lll|l}
-3 & 3 & 0 & 0 \\
3 & -3 & 0 & 0 \\
0 & 0 & -4 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
-3 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -4 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -4 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{lll|}
1 & -1 & 0 \\
0 & 0 & 1 \\
0
\end{array}\right)
$$

Rewriting this augmented matrix as a linear system gives

$$
\left\{\begin{array}{l}
x_{1}-x_{2}=0, \\
x_{3}=0
\end{array}=>\left\{\begin{array}{l}
x_{1}=x_{2} \\
x_{3}=0
\end{array}\right.\right.
$$

So the form of eigenvector X_{3} is given by:

$$
X_{3}=\left(\begin{array}{l}
x_{1} \\
x_{1} \\
0
\end{array}\right)=x_{1}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=C_{3}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

for any real number $C_{3} \neq 0$.
Answer: Eigenvalues of M are $\lambda_{1}=-1, \quad \lambda_{2}=1, \quad \lambda_{1}=5$, eigenvectors of M are $X_{1}=C_{1}\left(\begin{array}{l}1 \\ -1 \\ 0\end{array}\right), X_{2}=C_{2}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right), X_{3}=C_{3}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$, where $C_{1} \neq 0, C_{2} \neq 0, C_{3} \neq 0$.

