Answer on Question \#84604 - Math - Algebra

Question

1. A man travels 70 km at a certain average speed on a dual carriage way. He then reduces his speed by $30 \mathrm{~km} \backslash h$ to cover a distance of 50 km on a bad road. If the time taken is the same for both parts of the journey, calculate
a. His average speed for each part of the journey

Solution

Let t is time of each part of journey, v is average speed on the first part of journey; then:

$$
t=\frac{70}{v}=\frac{50}{v-30}
$$

$$
\begin{gathered}
70 \cdot(v-30)=50 v \\
20 v=2100 \\
v=105 \mathrm{~km} / \mathrm{h}
\end{gathered}
$$

The average speed on the second part of journey:

$$
v_{1}=105-30=75 \mathrm{~km} / \mathrm{h}
$$

Question

b. The average speed for the whole journey

Solution

$$
\begin{gathered}
t=\frac{70}{105}=\frac{2}{3} \mathrm{~h} \\
v_{0}=\frac{70+50}{2 \cdot 2 / 3}=\frac{3 \cdot 120}{4}=90 \mathrm{~km} / \mathrm{h}
\end{gathered}
$$

Question

2. A girl went to shop to buy pineapple and apple. A pineapple costs \#2 more than an apple. The girl bought as many pineapples for \#60 as she bought pineapples for \#54. How much does a pineapple and an apple cost together?

Solution

Let n is the number of pineapples or apples, x is price of apple; then:

$$
\begin{gathered}
(x+2) n=60 \\
x n=54 \\
\frac{x+2}{x}=\frac{60}{54}=\frac{10}{9} \\
9 \cdot(x+2)=10 x \\
x=18
\end{gathered}
$$

3. The sum of the ages of Mr Daniel and his daughter is 60 years. 5 years ago the ratio of their ages was 4: 1

Question

a. how old are the now

Solution

Let x be the age of Mr Daniel, y be the age of his daughter; then:

$$
\begin{aligned}
& x+y=60 \\
& \frac{x-5}{y-5}=4
\end{aligned}
$$

$$
\begin{gathered}
x=60-y \\
\frac{60-y-5}{y-5}=4 \\
60-y-5=4 y-20 \\
5 y=75 \\
y=15 \\
x=60-15=45
\end{gathered}
$$

Question

b. find the difference between their ages

Solution

$$
x-y=45-15=30
$$

