## Answer to Question \#84565-Math - Geometry

## Question

A triangle is placed in a semicircle with a radius of 9yd, as shown below. Find the area of the shaded region. Use the value 3.14 for $\pi$, and do not round your answer. Be sure to include the correct unit in your answer.

## Solution

The shaded figure is:


Any triangle inscribed inside a semicircle must be a right triangle.
ABC is a right angled triangle inscribed in the semicircle, with sides $A C=$ $B C=a$
$A B$ is the hypotenuse of the triangle $A B C$.
The radius of the circle is given as 9 yd and 0 is the centre of the semicircle.
The diameter of the semicircle is $A B=2 \times O B=2 \times 9=18 \mathrm{yd}$
Now by Pythagoras theorem, in the right triangle ABC we have:

$$
\begin{aligned}
& A C^{2}+B C^{2}=A B^{2} \\
& a^{2}+a^{2}=18^{2} \\
& 2 a^{2}=18^{2} \\
& a^{2}=\frac{18^{2}}{2}
\end{aligned}
$$

$a^{2}=18 \times 9$
$a=\sqrt{2 \times 9 \times 9}$
$a=9 \sqrt{2}$
Then the area of the triangle ABC is:
Area $=\frac{1}{2} \times$ Base $\times$ Height
Area $=\frac{1}{2} \times 9 \sqrt{2} \times 9 \sqrt{2}$
Area $=81 y d^{2}$
We see that the area of the circle is:
$A=\pi \times$ Radius $^{2}=\pi \times 9^{2}=81 \pi$
Therefore the area of the semicircle is:

$$
=\frac{1}{2} \times 81 \pi=40.5 \pi=40.5 \times 3.14=127.17 y d^{2} \quad(\pi=3.14 \text { given })
$$

We see that,
Area of the shaded region
$=$ Area of semicircle - Area of triangle ABC
$=127.17-81$
$=46.17 y d^{2}$
Hence the area of the shaded region is 46.17 sq yd.

