ANSWER on Question \#84506 - Math - Differential Equations

 QUESTION

 QUESTION}

Show that
1)

$$
J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cdot \cos (x)
$$

2)

$$
\frac{d}{d x}\left(x \cdot J_{1}(x)\right)=x \cdot J_{0}(x)
$$

where $J_{x}(x)$ is Bessel function.
(More information: https://en.wikipedia.org/wiki/Bessel function)

SOLUTION

2) To prove this formula, we will prove the general formulas:

$$
\left\{\begin{array}{l}
J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} \cdot J_{n}(x) \\
J_{n-1}(x)-J_{n+1}(x)=2 \cdot J_{n}^{\prime}(x)
\end{array} \rightarrow \frac{d}{d x}\left(x^{n} \cdot J_{n}(x)\right)=x^{n} \cdot J_{n-1}(x)\right.
$$

For this we use the generating function:

$$
e^{\left(\frac{x}{2}\right)\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}(x)
$$

(More information: https://en.wikipedia.org/wiki/Bessel function)

$$
\begin{gather*}
\frac{d}{d x} \left\lvert\, e^{\left(\frac{x}{2}\right)\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}(x) \rightarrow\right. \\
\left.e^{\left(\frac{x}{2}\right)\left(t-\frac{1}{t}\right)} \cdot \frac{1}{2}\left(t-\frac{1}{t}\right)=\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}^{\prime}(x) \rightarrow\left(\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}(x)\right) \cdot \frac{1}{2}\left(t-\frac{1}{t}\right)=\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}^{\prime}(x) \right\rvert\, \cdot\left(\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}(x)\right) \cdot\left(t-\frac{1}{t}\right)=2 \cdot \sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}^{\prime}(x) \rightarrow \tag{2}\\
\sum_{n=-\infty}^{\infty} t^{n+1} \cdot J_{n}(x)-\sum_{n=-\infty}^{\infty} t^{n-1} \cdot J_{n}(x)=2 \cdot \sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}^{\prime}(x)
\end{gather*}
$$

Since this is an equality of power series, the coefficients with the same t^{n} must be the same. To make it easier to compare the coefficients, we will do the remapping

$$
\begin{gathered}
n+1=k \rightarrow \sum_{n=-\infty}^{\infty} t^{n+1} \cdot J_{n}(x)=\sum_{k=-\infty}^{\infty} t^{k} \cdot J_{k-1}(x) \equiv \\
n-1=m \rightarrow \sum_{n=-\infty}^{\infty} t^{n-1} \cdot J_{n}(x)=\sum_{m=-\infty}^{\infty} t^{m} \cdot J_{m+1}(x) \equiv \sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n+1}(x)
\end{gathered}
$$

Then,

$$
\begin{gathered}
\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n-1}(x)-\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n+1}(x)=2 \cdot \sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}^{\prime}(x) \rightarrow \\
J_{n-1}(x)-J_{n+1}(x)=2 \cdot J_{n}^{\prime}(x)
\end{gathered}
$$

$$
\begin{gathered}
\frac{d}{d t} \left\lvert\, e^{\left(\frac{x}{2}\right)\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}(x) \rightarrow\right. \\
e^{\left(\frac{x}{2}\right)\left(t-\frac{1}{t}\right) \cdot \frac{x}{2}\left(1+\frac{1}{t^{2}}\right)=\sum_{n=-\infty}^{\infty} n t^{n-1} \cdot J_{n}(x) \rightarrow\left(\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}(x)\right) \cdot \frac{x}{2}\left(1+\frac{1}{t^{2}}\right)=\sum_{n=-\infty}^{\infty} n t^{n-1} \cdot J_{n}(x) \rightarrow} \\
\left.\frac{x}{2} \cdot\left(\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}(x)+\sum_{n=-\infty}^{\infty} t^{n-2} \cdot J_{n}(x)\right)=\sum_{n=-\infty}^{\infty} n t^{n-1} \cdot J_{n}(x) \right\rvert\, \cdot\left(\frac{2}{x}\right) \\
\sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}(x)+\sum_{n=-\infty}^{\infty} t^{n-2} \cdot J_{n}(x)=\sum_{n=-\infty}^{\infty}\left(\frac{2 n}{x}\right) t^{n-1} \cdot J_{n}(x)
\end{gathered}
$$

Since this is an equality of power series, the coefficients with the same t^{n} must be the same. To make it easier to compare the coefficients, we will do the remapping:

$$
\begin{aligned}
& n-1=m \rightarrow \sum_{n=-\infty}^{\infty} t^{n} \cdot J_{n}(x)=\sum_{m=-\infty}^{\infty} t^{m+1} \cdot J_{m+1}(x) \equiv \sum_{n=-\infty}^{\infty} t^{n+1} \cdot J_{n+1}(x) \\
& n-1=m \rightarrow \sum_{n=-\infty}^{\infty} t^{n-2} \cdot J_{n}(x)=\sum_{m=-\infty}^{\infty} t^{m-1} \cdot J_{m-1}(x) \equiv \sum_{n=-\infty}^{\infty} t^{n-1} \cdot J_{n-1}(x)
\end{aligned}
$$

Then,

$$
\begin{gathered}
\sum_{n=-\infty}^{\infty} t^{n+1} \cdot J_{n+1}(x)+\sum_{n=-\infty}^{\infty} t^{n-1} \cdot J_{n-1}(x)=\sum_{n=-\infty}^{\infty}\left(\frac{2 n}{x}\right) t^{n-1} \cdot J_{n}(x) \rightarrow \\
J_{n+1}(x)+J_{n-1}(x)=\frac{2 n}{x} \cdot J_{n}(x)
\end{gathered}
$$

Conclusion,

$$
\left\{\begin{array}{l}
J_{n-1}(x)-J_{n+1}(x)=2 \cdot J_{n}^{\prime}(x) \\
J_{n-1}(x)+J_{n+1}(x)=\frac{2 n}{x} \cdot J_{n}(x)
\end{array}\right.
$$

We add and subtract the equation indicating system

$$
\begin{gathered}
\left\{\begin{array} { l }
{ J _ { n - 1 } (x) - J _ { n + 1 } (x) = 2 \cdot J _ { n } ^ { \prime } (x) } \\
{ J _ { n - 1 } (x) + J _ { n + 1 } (x) = } \\
{ \frac { 2 n } { x } \cdot J _ { n } (x) }
\end{array} \rightarrow \left\{\begin{array}{l}
\left.2 J_{n-1}(x)=\frac{2 n}{x} \cdot J_{n}(x)+2 \cdot J_{n}^{\prime}(x) \right\rvert\, \cdot\left(\frac{x}{2}\right) \\
\left.2 J_{n+1}(x)=\frac{2 n}{x} \cdot J_{n}(x)-2 \cdot J_{n}^{\prime}(x) \right\rvert\, \cdot\left(\frac{x}{2}\right)
\end{array} \rightarrow\right.\right. \\
\left\{\begin{array}{l}
x \cdot J_{n-1}(x)=n \cdot J_{n}(x)+x \cdot J_{n}^{\prime}(x) \\
x \cdot J_{n+1}(x)=n \cdot J_{n}(x)-x \cdot J_{n}^{\prime}(x)
\end{array}\right.
\end{gathered}
$$

The first equation of the resulting system is important for us.

$$
\begin{gathered}
x \cdot J_{n-1}(x)=n \cdot J_{n}(x)+x \cdot J_{n}^{\prime}(x) \mid \cdot\left(x^{n-1}\right) \rightarrow \\
x^{n} \cdot J_{n-1}(x)=n \cdot x^{n-1} \cdot J_{n}(x)+x^{n} \cdot J_{n}^{\prime}(x) \rightarrow\left[\begin{array}{l}
n \cdot x^{n-1} \equiv \frac{d}{d x}\left(x^{n}\right) \\
J_{n}^{\prime}(x) \equiv \frac{d}{d x}\left(J_{n}(x)\right)
\end{array}\right] \rightarrow \\
x^{n} \cdot J_{n-1}(x)=\frac{d}{d x}\left(x^{n}\right) \cdot J_{n}(x)+x^{n} \cdot \frac{d}{d x}\left(J_{n}(x)\right) \rightarrow x^{n} \cdot J_{n-1}(x)=\frac{d}{d x}\left(x^{n} \cdot J_{n}(x)\right)
\end{gathered}
$$

Conclusion,

$$
\frac{d}{d x}\left(x^{n} \cdot J_{n}(x)\right)=x^{n} \cdot J_{n-1}(x)-\text { general formula }
$$

For $n=1$:

$$
\frac{d}{d x}\left(x^{1} \cdot J_{1}(x)\right)=x^{1} \cdot J_{1-1}(x) \rightarrow \frac{d}{d x}\left(x \cdot J_{1}(x)\right)=x \cdot J_{0}(x)
$$

1) To prove this formula, we use the representation of the Bessel function as a power series:

$$
J_{\alpha}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma(n+1) \Gamma(n+\alpha+1)}\left(\frac{x}{2}\right)^{2 n+\alpha}
$$

(More information: https://en.wikipedia.org/wiki/Bessel function)
Then, for $\alpha=1 / 2$:

$$
\begin{gathered}
J_{1 / 2}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma(n+1) \Gamma(n+1 / 2+1)}\left(\frac{x}{2}\right)^{2 n+1 / 2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma(n+1) \Gamma(n+3 / 2)}\left(\frac{x}{2}\right)^{2 n+1 / 2} \rightarrow \\
\left(\left(\frac{x}{2}\right)^{1 / 2}\right) \cdot \left\lvert\, J_{1 / 2}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma(n+1) \Gamma(n+3 / 2)}\left(\frac{x}{2}\right)^{2 n+1 / 2} \rightarrow\right. \\
\left(\frac{x}{2}\right)^{1 / 2} \cdot J_{1 / 2}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\Gamma(n+1) \Gamma(n+3 / 2)}\left(\frac{x}{2}\right)^{2 n+1} \rightarrow
\end{gathered}
$$

Now we need to use several properties of the gamma function:

$$
\left\{\begin{array}{c}
\Gamma(z+1)=z \cdot \Gamma(z) \\
\Gamma\left(\frac{1}{2}+n\right)=\frac{(2 n)!}{4^{n} \cdot n!} \sqrt{\pi} \\
\Gamma(n+1)=n!, \quad n=0,1,2,3,4, \ldots
\end{array}\right.
$$

(More information: https://en.wikipedia.org/wiki/Gamma function)

$$
\begin{aligned}
\Gamma\left(n+\frac{3}{2}\right)=\Gamma\left(\left(\frac{1}{2}+n\right)+1\right)=\left(n+\frac{1}{2}\right) & \Gamma\left(\frac{1}{2}+n\right)=\frac{2 n+1}{2} \cdot \frac{(2 n)!}{4^{n} \cdot n!} \sqrt{\pi}=\frac{2 n+1}{2} \cdot \frac{(2 n)!}{\left(2^{2}\right)^{n} \cdot n!} \sqrt{\pi}= \\
& =\frac{(2 n+1)!}{2^{2 n+1} \cdot n!} \sqrt{\pi}
\end{aligned}
$$

Then,

$$
\begin{gathered}
\sqrt{\frac{x}{2}} \cdot J_{1 / 2}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\cdot\left(\frac{(2 n+1)!}{2^{2 n+1} \cdot n!} \sqrt{\pi}\right)}\left(\frac{x}{2}\right)^{2 n+1} \rightarrow \\
\sqrt{\frac{x}{2}} \cdot J_{1 / 2}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot n!\cdot 2^{2 n+1}}{n!\cdot(2 n+1)!\cdot \sqrt{\pi}} \cdot \frac{x^{2 n+1}}{2^{2 n+1}}=\frac{1}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot x^{2 n+1}}{(2 n+1)!}
\end{gathered}
$$

Conclusion,

$$
\sqrt{\frac{x}{2}} \cdot J_{1 / 2}(x)=\frac{1}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot x^{2 n+1}}{(2 n+1)!}
$$

As we know

$$
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot x^{2 n+1}}{(2 n+1)!}
$$

(More information: https://en.wikipedia.org/wiki/Taylor series)

Then,

$$
\begin{gathered}
\left.\sqrt{\frac{x}{2}} \cdot J_{1 / 2}(x)=\frac{1}{\sqrt{\pi}} \cdot \sin (x) \right\rvert\, \cdot\left(\sqrt{\frac{2}{x}}\right) \rightarrow \\
J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cdot \sin (x)
\end{gathered}
$$

Commentary: The condition of this task contained a mistake, as it indicates the cosine.

