Locate and name the singularities of the following functions in the finite z-plane:

1. $f_{1}(z)=\frac{\ln (z+3 i)}{z^{2}}$
2. $f_{2}(z)=\frac{z^{2}-2 z}{z^{2}+2 z+2}$

Answer:

1. the function $f_{1}(z)$ has 2 singularities at points: $-3 i$ and 0 .
2. the function $f_{2}(z)$ has 2 singularities at points: $-1+i$ and $-1-i$.

$1 f_{1}(z)$

A function $\ln (z)$ has a singularity at $z=0$. This type of singularity points is also called a branch point. It means that as we travel from the point to itself looping around the branch point, we will eventually change the function value.

Now we know that $\ln (z+3 i)$ has a singularity point at $z=-3 i$. In the vicinity of this point function $\frac{1}{z^{2}}$ is analytical. So the multiplication of those two will still has a singularity.

A function $\frac{1}{z^{2}}$ has a singularity at $z=0$, namely a pole of order 2 . In the vicinity of this point function $\ln (z+3 i)$ is analytical. As in the previous case, we conclude that $f_{1}(z)$ has one more singularity.

As the function $f_{1}(z)$ is analytic everywhere except those two points, we now conclude that no more singularities exist.

$2 f_{2}(z)$

Let's start with transforming the function:

$$
\begin{gathered}
\frac{z^{2}-2 z}{z^{2}+2 z+2}=\frac{z(z-2)}{(z+1)^{2}+1} \\
=\frac{z(z-2)}{(z+1)^{2}-i^{2}}=\frac{z(z-2)}{(z+1-i)(z+1+i)} \\
=z \frac{1+3 i}{2(z+1-i)}+z \frac{1-3 i}{2(z+1+i)}
\end{gathered}
$$

Now we see that at points $-1+i$ and $-1-i$ function $f_{2}(z)$ has poles of order 1.

