Locate and name the singularities of the following functions in the finite z-plane:

1. $f_1(z) = \frac{\ln(z+3i)}{z^2}$

2.
$$f_2(z) = \frac{z^2 - 2z}{z^2 + 2z + 2}$$

Answer:

- 1. the function $f_1(z)$ has 2 singularities at points: -3i and 0.
- 2. the function $f_2(z)$ has 2 singularities at points: -1 + i and -1 i.

1 $f_1(z)$

A function $\ln(z)$ has a singularity at z = 0. This type of singularity points is also called a branch point. It means that as we travel from the point to itself looping around the branch point, we will eventually change the function value.

Now we know that $\ln(z + 3i)$ has a singularity point at z = -3i. In the vicinity of this point function $\frac{1}{z^2}$ is analytical. So the multiplication of those two will still has a singularity.

A function $\frac{1}{z^2}$ has a singularity at z = 0, namely a pole of order 2. In the vicinity of this point function $\ln(z+3i)$ is analytical. As in the previous case, we conclude that $f_1(z)$ has one more singularity.

As the function $f_1(z)$ is analytic everywhere except those two points, we now conclude that no more singularities exist.

2 $f_2(z)$

Let's start with transforming the function:

$$\frac{z^2 - 2z}{z^2 + 2z + 2} = \frac{z(z - 2)}{(z + 1)^2 + 1}$$
$$= \frac{z(z - 2)}{(z + 1)^2 - i^2} = \frac{z(z - 2)}{(z + 1 - i)(z + 1 + i)}$$
$$= z\frac{1 + 3i}{2(z + 1 - i)} + z\frac{1 - 3i}{2(z + 1 + i)}$$

Now we see that at points -1 + i and -1 - i function $f_2(z)$ has poles of order 1.