Question:

Obtain the eigenvalues and eigenvectors of the matrix: $M=\left[\begin{array}{lll}2 & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Solution:

The characteristic equation is $|M-\lambda I|=0$, where the roots λ are called the eigenvalues of M.
$|M-\lambda I|=\left|\begin{array}{ccc}2-\lambda & 3 & 0 \\ 3 & 2-\lambda & 0 \\ 0 & 0 & 1-\lambda\end{array}\right|=0$.
$(1-\lambda)\left\{(2-\lambda)^{2}-9\right\}=0 \Rightarrow(1-\lambda)\left(4-4 \lambda+\lambda^{2}-9\right)=0 \Rightarrow(1-\lambda)\left(\lambda^{2}-4 \lambda-5\right)=0$.
$(1-\lambda)(\lambda+1)(\lambda-5)=0$.
The eigenvalues are $\lambda=-1, \lambda=1, \lambda=5$.
The eigenvectors $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ are obtained by solving $(M-\lambda I) X=0$ for each λ.
When $\lambda=-1,(M-\lambda I) X=\left(\begin{array}{ccc}2+1 & 3 & 0 \\ 3 & 2+1 & 0 \\ 0 & 0 & 1+1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Rightarrow\left(\begin{array}{c}3 x_{1}+3 x_{2} \\ 3 x_{1}+3 x_{2} \\ 2 x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
$x_{1}+x_{2}=0, x_{3}=0$. Take $x_{2}=1$.
Hence the eigenvector corresponding to $\lambda=-1$ is $X=\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$.
When $\lambda=1,(M-\lambda I) X=\left(\begin{array}{ccc}2-1 & 3 & 0 \\ 3 & 2-1 & 0 \\ 0 & 0 & 1-1\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Rightarrow\left(\begin{array}{c}x_{1}+3 x_{2} \\ 3 x_{1}+x_{2} \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
$x_{1}=0, x_{2}=0, x_{3}=1$.
Hence the eigenvector corresponding to $\lambda=1$ is $X=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.

When $\lambda=5,(M-\lambda I) X=\left(\begin{array}{ccc}2-5 & 3 & 0 \\ 3 & 2-5 & 0 \\ 0 & 0 & 1-5\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \Rightarrow\left(\begin{array}{c}-3 x_{1}+3 x_{2} \\ 3 x_{1}-3 x_{2} \\ -4 x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
$x_{1}-x_{2}=0, x_{3}=0$. Take $x_{2}=1$.
Hence the eigenvector corresponding to $\lambda=5$ is $X=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$.

