Answer on Question \#84330 - Math - Other

Question

A sales manager wishes to assign four sales territories to four salespersons. The salespersons differ in their ability and skills and consequently the sales expected in each territory are different. The estimates of sales per month for each salesperson in different territories are given below:

		Estimated monthly sales territory			
		1	2	3	4
	A	20	40	45	30
	B	50	40	55	40
	C	45	40	42	50
	D	48	50	42	45

Find the optimal assignment of the four salespersons to the four different territories and the maximum monthly sales.

Solution

The problem can be solved by complete enumeration method:

No.	Assignment	Sales	No.	Assignment	Sales
1	$1 \mathrm{~A}, 2 \mathrm{~B}, 3 \mathrm{C}, 4 \mathrm{D}$	147	13	$3 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{C}, 4 \mathrm{D}$	180
2	$1 \mathrm{~A}, 2 \mathrm{~B}, 4 \mathrm{C}, 3 \mathrm{D}$	152	14	$3 \mathrm{~A}, 1 \mathrm{~B}, 4 \mathrm{C}, 2 \mathrm{D}$	195
3	$1 \mathrm{~A}, 3 \mathrm{~B}, 2 \mathrm{C}, 4 \mathrm{D}$	160	15	$3 \mathrm{~A}, 2 \mathrm{~B}, 1 \mathrm{C}, 4 \mathrm{D}$	175
4	$1 \mathrm{~A}, 3 \mathrm{~B}, 4 \mathrm{C}, 2 \mathrm{D}$	175	16	$3 \mathrm{~A}, 2 \mathrm{~B}, 4 \mathrm{C}, 1 \mathrm{D}$	183
5	$1 \mathrm{~A}, 4 \mathrm{~B}, 2 \mathrm{C}, 3 \mathrm{D}$	142	17	$3 \mathrm{~A}, 4 \mathrm{~B}, 1 \mathrm{C}, 2 \mathrm{D}$	180
6	$1 \mathrm{~A}, 4 \mathrm{~B}, 3 \mathrm{C}, 2 \mathrm{D}$	152	18	$3 \mathrm{~A}, 4 \mathrm{~B}, 2 \mathrm{C}, 1 \mathrm{D}$	173
7	$2 \mathrm{~A}, 1 \mathrm{~B}, 3 \mathrm{C}, 4 \mathrm{D}$	177	19	$4 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{C}, 3 \mathrm{D}$	162
8	$2 \mathrm{~A}, 1 \mathrm{~B}, 4 \mathrm{C}, 3 \mathrm{D}$	182	20	$4 \mathrm{~A}, 1 \mathrm{~B}, 3 \mathrm{C}, 2 \mathrm{D}$	172
9	$2 \mathrm{~A}, 3 \mathrm{~B}, 1 \mathrm{C}, 4 \mathrm{D}$	185	21	$4 \mathrm{~A}, 2 \mathrm{~B}, 1 \mathrm{C}, 3 \mathrm{D}$	157
10	$2 \mathrm{~A}, 3 \mathrm{~B}, 4 \mathrm{C}, 1 \mathrm{D}$	193	22	$4 \mathrm{~A}, 2 \mathrm{~B}, 3 \mathrm{C}, 1 \mathrm{D}$	160
11	$2 \mathrm{~A}, 4 \mathrm{~B}, 1 \mathrm{C}, 3 \mathrm{D}$	167	23	$4 \mathrm{~A}, 3 \mathrm{~B}, 1 \mathrm{C}, 2 \mathrm{D}$	180
12	$2 \mathrm{~A}, 4 \mathrm{~B}, 3 \mathrm{C}, 1 \mathrm{D}$	170	24	$4 \mathrm{~A}, 3 \mathrm{~B}, 2 \mathrm{C}, 1 \mathrm{D}$	173

Answer: The optimal assignment is $3 \mathrm{~A}, 1 \mathrm{~B}, 4 \mathrm{C}, 2 \mathrm{D}$; the maximum monthly sales are 195.

