## Answer to Question \#84284, Math / Calculus

Question: Find the asymptote of curve $x^{3}-4 x y^{2}-3 x^{2}+12 x y-12 y^{2}+8 x+2 y+4=0$.

## Solution:

To find the rectangular asymptotes, equate the coefficient of $x^{3}=0$ and coefficient of $y^{2}=0$.
The first implies $1=0$ which is absurd. Therefore there is no asymptote parallel to $x$-axis.
The second implies $-4 x-12=0 \Rightarrow x=-3$, hence $x=-3$ is an asymptote parallel to $y$-axis.

Let the oblique asymptote be $y=m x+c$.
Now to find the oblique asymptote, put $x=1$ and $y=m$.
We get $\phi_{3}(m)=1-4 m^{2}=0 \Rightarrow m= \pm \frac{1}{2}$.
Then $c \phi_{3}{ }^{\prime}(m)+\phi_{2}(m)=0 \Rightarrow c(-8 m)+\left(-3+12 m-12 m^{2}\right)=0$.
When $m=\frac{1}{2}, c(-4)+(-3+6-3)=0 \Rightarrow c=0$.

When $m=-\frac{1}{2}, c(4)+(-3-6-3)=0 \Rightarrow c=3$.
Hence the oblique asymptotes are $y=\frac{1}{2} x \Rightarrow x-2 y=0$ and $y=-\frac{1}{2} x+3 \Rightarrow x+2 y=6$.
$x-2 y=0$ and $x+2 y=6$.

