

Answer on Question #84254 – Math – Calculus

Question

Q1. A particle is positioned at the origin of a set of axes. Two forces act on it. The first has magnitude 5 N and acts in the direction of the negative x-axis. The second has magnitude 12 N and acts in the direction of the positive y-axis. Calculate the magnitude and direction of the resultant force.

Solution

$$|\vec{F}_1| = 5 \text{ N}, \quad |\vec{F}_2| = 12 \text{ N}$$

1. The magnitude of resultant force:

$$|\vec{F}_{res}| = \sqrt{|\vec{F}_1|^2 + |\vec{F}_2|^2} = \sqrt{5^2 + 12^2} = \sqrt{169} = 13 \text{ N}$$

2. Angle between \vec{F}_{res} and negative direction of x-axis:

$$\alpha = \tan^{-1} \frac{|\vec{F}_2|}{|\vec{F}_1|} = \tan^{-1} \frac{12 \text{ N}}{5 \text{ N}} = \tan^{-1} 2.4 \approx 67.38^\circ$$

Answer: magnitude: 13 N, direction: 67.38° .

Question

Q2. If $\mathbf{a} = 5\mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = -2\mathbf{i} + 2\mathbf{j}$, find unit vectors of vectors \mathbf{a} , \mathbf{b} and $\mathbf{a} - \mathbf{b}$.

Solution

$$\vec{a} = 5\vec{i} - 2\vec{j}; \quad \vec{b} = -2\vec{i} + 2\vec{j};$$

1. Unit vector of \vec{a} :

$$\vec{e} = \frac{\vec{a}}{|\vec{a}|} = \frac{5\vec{i} - 2\vec{j}}{\sqrt{a_x^2 + a_y^2}} = \frac{5\vec{i} - 2\vec{j}}{\sqrt{5^2 + (-2)^2}} = \frac{5\vec{i} - 2\vec{j}}{\sqrt{25+4}} = \frac{5\vec{i} - 2\vec{j}}{\sqrt{29}} = \frac{5}{\sqrt{29}}\vec{i} - \frac{2}{\sqrt{29}}\vec{j}$$

2. Unit vector of \vec{b} :

$$\vec{e} = \frac{\vec{b}}{|\vec{b}|} = \frac{-2\vec{i} + 2\vec{j}}{\sqrt{b_x^2 + b_y^2}} = \frac{-2\vec{i} + 2\vec{j}}{\sqrt{(-2)^2 + 2^2}} = \frac{-2\vec{i} + 2\vec{j}}{\sqrt{4+4}} = \frac{-2\vec{i} + 2\vec{j}}{\sqrt{2*4}} = -\frac{2}{2\sqrt{2}}\vec{i} + \frac{2}{2\sqrt{2}}\vec{j} = -\frac{1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}}\vec{j}$$

3. Unit vector of $\vec{a} - \vec{b}$:

$$\vec{a} - \vec{b} = (a_x - b_x)\vec{i} + (a_y - b_y)\vec{j} = (5 - (-2))\vec{i} + (-2 - 2)\vec{j} = 7\vec{i} - 4\vec{j}$$

$$\vec{e} = \frac{\vec{a} - \vec{b}}{|\vec{a} - \vec{b}|} = \frac{7\vec{i} - 4\vec{j}}{\sqrt{(7)^2 + (-4)^2}} = \frac{7\vec{i} - 4\vec{j}}{\sqrt{49+16}} = \frac{7\vec{i} - 4\vec{j}}{\sqrt{65}} = \frac{7}{\sqrt{65}}\vec{i} - \frac{4}{\sqrt{65}}\vec{j}$$

Answer: unit vectors: $\frac{5}{\sqrt{29}}\vec{i} - \frac{2}{\sqrt{29}}\vec{j}$, $-\frac{1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}}\vec{j}$, $\frac{7}{\sqrt{65}}\vec{i} - \frac{4}{\sqrt{65}}\vec{j}$

Question

Q3. If $u = 3i + 2j$ and $v = -5i + 4j$.

(a) Express i and j in terms of u and v .

(b) Suppose $i + 8j = au + bv$, find the values of a and b

Solution

$$\vec{u} = 3\vec{i} + 2\vec{j}, \quad \vec{v} = -5\vec{i} + 4\vec{j}$$

(a)

$$-2\vec{u} = -6\vec{i} - 4\vec{j}, \quad \vec{v} = -5\vec{i} + 4\vec{j} \rightarrow -2\vec{u} + \vec{v} = -11\vec{i} \rightarrow \vec{i} = \frac{2}{11}\vec{u} - \frac{1}{11}\vec{v}$$

$$\vec{u} = 3\vec{i} + 2\vec{j} = \frac{6}{11}\vec{u} - \frac{3}{11}\vec{v} + 2\vec{j} \rightarrow 2\vec{j} = \frac{11}{11}\vec{u} - \frac{6}{11}\vec{u} + \frac{3}{11}\vec{v} = \frac{5}{11}\vec{u} + \frac{3}{11}\vec{v} \rightarrow \vec{j} = \frac{5}{22}\vec{u} + \frac{3}{22}\vec{v}$$

(b)

$$\vec{i} + 8\vec{j} = a\vec{u} + b\vec{v}$$

$$\vec{i} + 8\vec{j} = \frac{2}{11}\vec{u} - \frac{1}{11}\vec{v} + \frac{20}{11}\vec{u} + \frac{12}{11}\vec{v} = 2\vec{u} + \vec{v} = a\vec{u} + b\vec{v} \rightarrow a = 2, b = 1$$

Answer:

(a) $\vec{i} = \frac{2}{11}\vec{u} - \frac{1}{11}\vec{v}$, $\vec{j} = \frac{5}{22}\vec{u} + \frac{3}{22}\vec{v}$

(b) $a = 2, b = 1$

Question

Q4. If $a = 3i - 2j$ and $b = 2i - 3j$, find

(i) $|a|$; **(ii)** b ; **(iii)** $|b - a|$; **(iv)** $|a - b|$.

Solution

$$\vec{a} = 3\vec{i} - 2\vec{j}, \quad \vec{b} = 2\vec{i} - 3\vec{j}$$

(i) $|\vec{a}| = \sqrt{a_x^2 + a_y^2} = \sqrt{3^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13}$

(ii) $|\vec{b}| = \sqrt{b_x^2 + b_y^2} = \sqrt{2^2 + (-3)^2} = \sqrt{4 + 9} = \sqrt{13}$

(iii) $\vec{b} - \vec{a} = (b_x - a_x)\vec{i} + (b_y - a_y)\vec{j} = -\vec{i} - \vec{j}$

$$|\vec{b} - \vec{a}| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$

$$\text{(iv)} \quad |\vec{a} - \vec{b}| = |\vec{b} - \vec{a}| = \sqrt{2}$$

Answer: $|\vec{a}| = |\vec{b}| = \sqrt{13}$, $|\vec{a} - \vec{b}| = |\vec{b} - \vec{a}| = \sqrt{2}$.