## Answer to Question \#84219, Math / Linear Algebra

Question: Show for a square matrix, the followings are equivalent.
The columns of $A$ are all vectors of length 1, and are all at right angles to each other.
$A^{T}=A^{-1}$.
Solution:
$\Rightarrow$
Given $A$ is a square matrix of order $n$.
$A=\left[\begin{array}{lllll}A_{1} & A_{2} & A_{3} & \ldots & A_{n}\end{array}\right]$, where each $A_{i}=\left[\begin{array}{llll}a_{1 i} & a_{2 i} & a_{3 i} & \ldots\end{array} a_{n i}\right]^{T}$ is a vector of length 1.
i.e., $\sqrt{a_{1 i}{ }^{2}+a_{2 i}{ }^{2}+\ldots+a_{n i}{ }^{2}}=1 \quad \Rightarrow a_{1 i}{ }^{2}+a_{2 i}{ }^{2}+\ldots+a_{n i}{ }^{2}=1$.
$A_{i}^{2}=1$.

Also the columns of $A$ are all at right angles to each other. i.e., $A_{i} \cdot A_{j}=0$.
i.e., $A_{i} A_{j}^{T}=0, \forall i \neq j \quad \Rightarrow a_{1 i} a_{j 1}+a_{2 i} a_{j 2}+\ldots+a_{n i} a_{j n}=0, \forall i \neq j$.

Now $A A^{T}=\left[\begin{array}{llll}A_{1}{ }^{2} & A_{1} A_{2}{ }^{T} & A_{1} A_{3}{ }^{T} & A_{1} A_{n}{ }^{T} \\ A_{2} A_{1}^{T} & A_{2}{ }^{2} & A_{2} A_{3}{ }^{T} & \ldots A_{2} A_{n}{ }^{T} \\ A_{3} A_{1}^{T} & A_{3} A_{2}{ }^{T} & A_{3}{ }^{2} & A_{3} A_{n}{ }^{T} \\ . & & & \\ . & & & \\ A_{n} A_{1}{ }^{T} & A_{n} A_{2}{ }^{T} & A_{n} A_{3}{ }^{T} & \ldots\end{array} A_{n}{ }^{2}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & 0 \\ . & & & \\ . & & & \\ 0 & 0 & 0 & 1\end{array}\right]=I$.
Therefore, $A^{T}=A^{-1}$.
$\Leftrightarrow$
Given $A^{T}=A^{-1}$.
i.e., $A A^{T}=I \Rightarrow\left[\begin{array}{cccc}A_{1}{ }^{2} & A_{1} A_{2}{ }^{T} & A_{1} A_{3}{ }^{T} & A_{1} A_{n}{ }^{T} \\ A_{2} A_{1}{ }^{T} & A_{2}{ }^{2} & A_{2} A_{3}{ }^{T} & \ldots A_{2} A_{n}{ }^{T} \\ A_{3} A_{1}^{T} & A_{3} A_{2}{ }^{T} & A_{3}{ }^{2} & A_{3} A_{n}{ }^{T} \\ . & & & \\ . & & & \\ A_{n} A_{1}{ }^{T} & A_{n} A_{2}{ }^{T} & A_{n} A_{3}{ }^{T} \ldots & A_{n}{ }^{2}\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & 0 \\ . & & & \\ . & & & \\ 0 & 0 & 0 & 1\end{array}\right]$

This implies $A_{i}^{2}=1, \forall i=1,2, \ldots, n$.

Thus each vector $A_{i}$ is of length 1.

And $A_{i} A_{j}^{T}=0, \forall i \neq j$, which implies that $A_{i} \cdot A_{j}=0, \forall i \neq j$.

Thus the columns of $A$ are all at right angles to each other.
Thus the equivalence of the two statements is proved.

