Answer on Question \#84157 - Math - Geometry

Question

$A B C D$ is a square. E, F are points on $B C, C D$ such that $\angle E A F=45^{\circ}, \angle E A B=15^{\circ}$. $B D$ intersects $A E$ at P. What is the value of $\angle \mathrm{PFC}$ in degrees?

Solution

$\angle A B P=\angle D B C=45^{\circ}$ because $B D$ is the bisector of $\angle A B C\left(\angle A B C=90^{\circ}\right.$ because $A B C D$ is a square).
$\angle \mathrm{APB}=180^{\circ}-\angle \mathrm{BAP}-\angle \mathrm{ABP}=180^{\circ}-15^{\circ}-45^{\circ}=120^{\circ}$ (by theorem about the sum of angles of a triangle).
$\triangle A B P=\triangle B P C$ by the SAS theorem ($P B$ is common, $A B=B C$ as the sides of the square and the angle between them), then $\angle B P C=\angle A P B=120^{\circ}$.
$\angle B P C$ and $\angle D P C$ are adjacent angles, then
$\angle C P D=180^{\circ}-\angle B P C=180^{\circ}-120^{\circ}=60^{\circ}$.
$\triangle \mathrm{DPC}=\triangle \mathrm{DPA}$ by SAS theorem $(\mathrm{AD}=\mathrm{DC}, \angle \mathrm{PDC}=\angle \mathrm{PDA}, \mathrm{PD}$ is common), then $\angle P C D=\angle P A D=\angle D A F+\angle F A P=30^{\circ}+45^{\circ}=75^{\circ}$.
The triangles $\triangle A O P$ and $\triangle D O F$ are similar ($\angle A O P=\angle D O F$ as vertical, $\angle O A P=\angle O D F=45^{\circ}$), then $\frac{O F}{O P}=\frac{O D}{O A}$.

The $\triangle \mathrm{ADO}$ and the $\triangle \mathrm{PFO}$ are similar triangles ($\angle \mathrm{AOD}$ and $\angle \mathrm{POF}$ are equal as vertical, $\frac{O F}{O P}=\frac{O D}{O A}$ because the triangles $\triangle A O P$ and $\triangle D O F$ are similar) then $\angle O F P=\angle O D A=45^{\circ}$, in other words, $\angle A F P=\angle A D B=45^{\circ}$.
$\angle A O D=180^{\circ}-\angle D A O-\angle A D O=180^{\circ}-30^{\circ}-45^{\circ}=105^{\circ}$ (by theorem about the sum of angles of a triangle)
$\angle \mathrm{FOD}=180^{\circ}-\angle \mathrm{AOD}=180^{\circ}-105^{\circ}=75^{\circ}$
$\angle \mathrm{AFD}=180^{\circ}-\angle \mathrm{DOF}-\angle \mathrm{ODF}=180^{\circ}-75^{\circ}-45^{\circ}=60^{\circ}$
$\angle \mathrm{PFD}=\angle P F O+\angle O F D=45^{\circ}+60^{\circ}=105^{\circ}$.
$\angle P F C=180^{\circ}-\angle P F D=180^{\circ}-105^{\circ}=75^{\circ}$.

Answer: $\angle \mathrm{PFC}=75^{\circ}$.

