Answer on Question #84078 – Math – Real Analysis

Question

a) Every infinite set is an open set.

b) A necessary condition for a function *f* to be integrable is that it is continuous.

true or false?

Solution

a) False. A counterexample can be the set of integer numbers $\{..., -2, -1, 0, 1, 2, ...\}$ on the real axis, which is infinite as a set of points but not open (it is closed, in fact), or intervals of type [a, b), (a, b], [a, b] with a < b, which are infinite as sets of points, but not open.

b) False. The function f(x) such that f(x) = 0 for $x \le 0$, and f(x) = 1 for x > 0 is integrable on every finite interval, but it is not continuous at x = 0.

Answer: a) false; b) false.