Answer on Question \#84078 - Math - Real Analysis

Question

a) Every infinite set is an open set.
b) A necessary condition for a function f to be integrable is that it is continuous.
true or false?

Solution

a) False. A counterexample can be the set of integer numbers $\{\ldots,-2,-1,0,1,2, \ldots\}$ on the real axis, which is infinite as a set of points but not open (it is closed, in fact), or intervals of type $[a, b),(a, b],[a, b]$ with $a<b$, which are infinite as sets of points, but not open.
b) False. The function $f(x)$ such that $f(x)=0$ for $x \leq 0$, and $f(x)=1$ for $x>0$ is integrable on every finite interval, but it is not continuous at $x=0$.

Answer: a) false; b) false.

