Answer on Question #84076 – Math – Real Analysis

Question

The function $f(x) = x^2 + x$ is differentiable at x = -1.

Solution

A function is differentiable at a point if it has a derivative there. In other words, the function f is differentiable at x if

$$\lim_{h\to 0} (f(x+h) - f(x))/h$$

exists.

Find a limit

$$\lim_{h \to 0} \frac{(x+h)^2 + (x+h) - ((x)^2 + (x))}{h} =$$

$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + x + h - x^2 - x}{h} = \lim_{h \to 0} \frac{2xh + h^2 + h}{h} = 2x + 1.$$
f'(x) = 2x + 1.
The function f (x) = x² + x is differentiable at x = -1:
f'(-1) = 2*(-1) + 1 = -2 + 1 = -1;
f'(-1) = -1.

Answer: Yes, the function $f(x) = x^2 + x$ is differentiable at x = -1.

Answer provided by https://www.AssignmentExpert.com