Answer on Question \#84076 - Math - Real Analysis Question

The function $f(x)=x 2+x$ is differentiable at $x=-1$.

Solution

A function is differentiable at a point if it has a derivative there. In other words, the function f is differentiable at x if

$$
\lim _{h \rightarrow 0}(f(x+h)-f(x)) / h
$$

exists.

Find a limit

$$
\lim _{h \rightarrow 0} \frac{(x+h)^{2}+(x+h)-\left((x)^{2}+(x)\right)}{h}=
$$

$=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+x+h-x^{2}-x}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+h}{h}=2 x+1$.
$f^{\prime}(x)=2 x+1$.
The function $f(x)=x^{2}+x$ is differentiable at $x=-1$:
$f^{\prime}(-1)=2^{*}(-1)+1=-2+1=-1$;
$f^{\prime}(-1)=-1$.
Answer: Yes, the function $f(x)=x 2+x$ is differentiable at $x=-1$.

