Answer to Question #84074, Math / Real Analysis

Question: Every subsequence of the sequence $\left(rac{1}{n^2}
ight)$ is convergent.

Solution:

First we prove that the sequence $\left(\frac{1}{n^2}\right)$ is convergent. Then we shall show that every subsequence of a convergent sequence converges.

Let $\varepsilon > 0$ be given. By Archimedean property, there exists a $N \in \mathbb{N}$ such that $\frac{1}{N^2} < \varepsilon$.

For all
$$n \ge N$$
, $\left(\frac{1}{n^2} - 0\right) = \frac{1}{n^2} \le \frac{1}{N^2} < \varepsilon$.

Thus the sequence $\left(\frac{1}{n^2}\right)$ converges to 0.

Now let (b_n) be any subsequence of the sequence (a_n) where $a_n = \frac{1}{n^2}$.

Let $\,\varepsilon>0\,$ be given. For $\,n\geq N$, $\,b_{_n}=a_{_m}\,$ for some $\,m\geq n\geq N\,.$

$$|b_n - 0| = |a_m - 0| < \varepsilon$$
 for all $n \ge N$.

Thus the subsequence (b_n) is convergent.

Hence every subsequence of a convergent sequence is convergent.