Answer to Question \#83990 - Math - Combinatorics | Number Theory

Given word assassination
a is 3 times, s is 3 times, i is 2 times, n is 2 times, t once and o once
CASE $1:(\alpha, \beta, \gamma, \delta, \theta)$ all the letters are different

There are 6 different letters so number of 5 letter words $={ }^{6} p_{5}=\frac{6!}{(6-5)!}=\frac{6!}{1!}=720$
CASE II: $(\alpha, \alpha, \gamma, \delta, \theta)$ one letter repeated and other 3 are different

Repeated letters α can be selected out of a, s,i or n in 4 ways and 3 different letters can be selected in ${ }^{5} C_{3}$ ways

Hence in this case number of 5 letter words $=4 \times{ }^{5} C_{3} \times \frac{5!}{2!}=4 \times 10 \times 60=2400$

CASE 1 II: $(\alpha, \alpha, \beta, \beta, \gamma)$ two letters repeated and other 1 different In this case number of 5 letter words $={ }^{4} C_{2} \times{ }^{4} C_{1} \times \frac{5!}{2!2!}=6 \times 4 \times \frac{5!}{4}=720$

CASE IV : $(\alpha, \alpha, \alpha, \beta, \gamma)$ one letter repeated 3 times and other 2 different In this case number of 5 letter words $={ }^{2} C_{1} \times{ }^{5} C_{2} \times \frac{5!}{3!}=2 \times 10 \times \frac{5!}{3!}=400$

CASE V: $(\alpha, \alpha, \alpha, \beta, \beta)$ one letter repeated 3 times and one letter repeated 2 times In this case number of 5 letter words $={ }^{2} C_{1} \times{ }^{3} C_{1} \times \frac{5!}{3!2!}=2 \times 3 \times \frac{5!}{3!2!}=60$

Total number of different five letter words = CASE 1 + CASE 11 + CASE 111 + CASE IV + CASE V

$$
\begin{aligned}
& =720+2400+720+400+60 \\
& =4300 .
\end{aligned}
$$

Answer: 4300.

