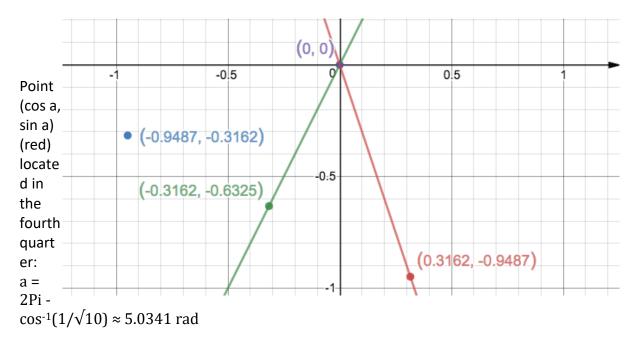
Answer on Question #83988 – Math – Geometry Question

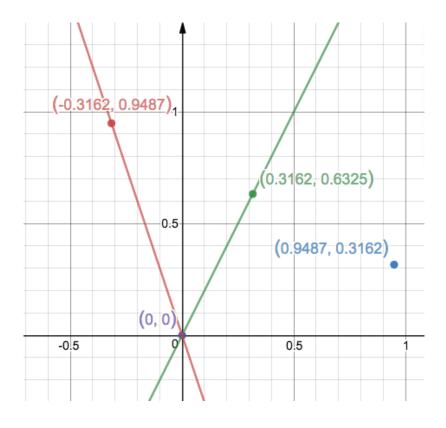
The centroid of a triangle formed by the points (0,0), ($\cos a$, $\sin a$), and ($\sin a$, $-\cos a$) lies on the line y = 2x, then a-?

Solution

The centroid is the intersection point of the medians. Line y = 2x goes through the point (0, 0) which is one of the vertices of the triangle. And also this line goes through the centroid by condition. This means that line y = 2x is one of the medians of triangle. Find the middle of the segment (cos a, sin a) (sin a, -cos a):


((cos a + sin a) / 2, (sin a – cos a) / 2)

This point lies on the line y = 2x which means:


 $(\sin a - \cos a) / 2 = 2 * (\cos a + \sin a) / 2$ $\sin a - \cos a = 2 \cos a + 2 \sin a$ $3 \cos a + \sin a = 0$ $3 \cos a + \sqrt{(1 - \cos^2 a)} = 0$ $(1 - \cos^2 a) = 9 \cos^2 a$ $\cos^2 a = 1/10$ $\cos a = \pm 1/\sqrt{10}$

We got two solutions: $\cos a = 1/\sqrt{10}$, $\sin a = -3/\sqrt{10}$ $\cos a = -1/\sqrt{10}$, $\sin a = 3/\sqrt{10}$

Draw solutions on the chart and find the angle a. $\cos a = 1/\sqrt{10}$, $\sin a = -3/\sqrt{10}$

 $\cos a = -1/\sqrt{10}$, $\sin a = 3/\sqrt{10}$

Point (cos a, sin a) (red) is in the second quarter: a = cos⁻¹(-1/ $\sqrt{10}$) \approx 1.8925 rad

Answer: $2\pi - \cos^{-1}(1/\sqrt{10}) \approx 5.0341$ rad, $\cos^{-1}(-1/\sqrt{10}) \approx 1.8925$ rad.