Answer on Question \#83982 - Math - Analytic Geometry

Question

Equation of one side of a square is $2 x+3 y+4=0$. If the center is $(1,1)$ then find the equations of adjoined two sides of the square.

Solution

The distance from the center to the given side is $h=\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}}=\frac{|2 \cdot 1+3 \cdot 1+4|}{\sqrt{2^{2}+3^{2}}}=\frac{9}{\sqrt{13}}$.
The center point doesn't lie on the side because $h \neq 0$.

The equation of the line through the point perpendicular to given side is $0 \equiv b x-a y-b x_{0}+$ $a y_{0}:=b x-a y+c_{0}=3 x-2 y-1$.

The equations of adjoined two sides are $b x-a y+c_{0} \pm h \sqrt{b^{2}+(-a)^{2}}=0$, i.e. $3 x-2 y+$ $8=0$ and $3 x-2 y-10=0$.

Answer:

$3 x-2 y+8=0,3 x-2 y-10=0$.

