Answer on Question \#83981 - Math - Analytic Geometry

Question

In a square $A B C D, A(1,3)$ and $C(4,2)$ are two vertices. AC is a diagonal. Express the coordinates of a point on the diagonal BD using a real parameter. Hence find the coordinates of the other two vertices.

Solution

The point $M\left(\frac{A_{x}+C_{x}}{2}, \frac{A_{y}+C_{y}}{2}\right)=M(2.5,2.5)$ is the center of the square.
The parametric equations of $A C$ are $x=M_{x}+\left(C_{x}-A_{x}\right) t, y=M_{y}+\left(C_{y}-A_{y}\right) t$.
The parametric equations of $B D$ are $x=M_{x}-\left(C_{y}-A_{y}\right) s, y=M_{y}+\left(C_{x}-A_{x}\right) s$.

There are relationships between vertexes:
$\overrightarrow{r_{B D}}=\overrightarrow{r_{A C}}$
$\overrightarrow{r_{O A}}=\overrightarrow{r_{O M}}+t_{A} \overrightarrow{r_{A C}}$
$\overrightarrow{r_{O C}}=\overrightarrow{r_{O M}}+t_{C} \overrightarrow{r_{A C}}=\overrightarrow{r_{O M}}-t_{A} \overrightarrow{r_{A C}}$,
$\overrightarrow{r_{O B}}=\overrightarrow{r_{O M}}+s_{B} \overrightarrow{r_{B D}}=\overrightarrow{r_{O M}}+t_{A} \overrightarrow{r_{B D}}$,
$\overrightarrow{r_{O D}}=\overrightarrow{r_{O M}}+s_{D} \overrightarrow{r_{B D}}=\overrightarrow{r_{O M}}-s_{B} \overrightarrow{r_{B D}}$
The coordinates of the vertex B are
$x=M_{x}-\left(C_{y}-A_{y}\right) s_{B}=M_{x}-\left(C_{y}-A_{y}\right) t_{A}=M_{x}-\frac{\left(C_{y}-A_{y}\right)\left(A_{x}-M_{x}\right)}{\left(C_{x}-A_{x}\right)}=2.5-\frac{-1 *(-1.5)}{3}=2$,
$y=M_{y}+\left(C_{x}-A_{x}\right) s_{B}=M_{x}+\left(C_{x}-A_{x}\right) t_{A}=M_{y}+\frac{\left(C_{x}-A_{x}\right)\left(A_{x}-M_{x}\right)}{\left(C_{x}-A_{x}\right)}=2.5+\frac{3 *(-1.5)}{3}=1$
The coordinates of the vertex D are
$x=M_{x}-\left(C_{y}-A_{y}\right) s_{D}=M_{x}+\left(C_{y}-A_{y}\right) s_{B}=2.5+\frac{-1 *(-1.5)}{3}=3$,
$y=M_{y}+\left(C_{x}-A_{x}\right) s_{D}=M_{y}-\left(C_{x}-A_{x}\right) s_{B}=2.5-\frac{3 *(-1.5)}{3}=4$

Answer:

The other two vertices are $B(2,1)$ and $D(3,4)$.

