Answer on Question \#83914 - Math - Calculus

Question

1. Sketch the curve $C: y=x e^{\wedge}-x^{\wedge} 2$ and the line $L: y=x+1$ for 0 less than or equal to x less than or equal to 2 . Hence, determine the area of the region bounded by the curve C , the line $L, x=2$ and the y-axis.

Solution

The figure 1 shows plots of the line L and the curve C. Obviously, the area desired

$$
\begin{gathered}
S=\int_{0}^{2}(x+1) d x-\int_{0}^{2} x e^{-x^{2}} d x \\
\int_{0}^{2}(x+1) d x=\left.\left(\frac{x^{2}}{2}+x\right)\right|_{0} ^{2}=4 \\
\int_{0}^{2} x e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{2} e^{-x^{2}} d x^{2}=\left.\frac{1}{2}\left(-e^{-x^{2}}\right)\right|_{0} ^{2}=\frac{1}{2}\left(1-e^{-4}\right) \\
S=4-\frac{1}{2}\left(1-e^{-4}\right)=\frac{7}{2}+\frac{1}{2 e^{4}}
\end{gathered}
$$

Figure 1.
Answer: $\frac{7}{2}+\frac{1}{2 e^{4}}$.

Question

2. A cannon ball is shot up from the ground at an angle θ to the horizontal. The horizontal distance and the vertical distance from O against time, t , are governed by
the following equations respectively:
$\mathrm{x}=\mathrm{u} \cos (\theta) \mathrm{t}$
$y=u \sin (\theta) t-0.5 g t^{\wedge} 2$
(Hint: u, θ and g are constant parameters)
Determine:
(i) $d y / d x$ in terms of x, u, θ and g;
and
(ii) the maximum height of cannon ball attained.

Solution

(i)

$$
\begin{gathered}
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{u \sin \theta-g t}{u \cos \theta}=\frac{u \sin \theta-\frac{g x}{u \cos \theta}}{u \cos \theta}=\frac{u^{2} \sin \theta \cos \theta-g x}{u^{2} \cos ^{2} \theta} \\
=\tan \theta-\frac{g}{u^{2} \cos ^{2} \theta} x
\end{gathered}
$$

(ii)

The maximum height is reached when

$$
\frac{d y}{d t}=u \sin \theta-g t=0 \rightarrow t=t_{*}=\frac{u \sin \theta}{g}
$$

because $\frac{d^{2} y}{d t^{2}}\left(t_{*}\right)=\left.(u \sin \theta-g t)_{t}^{\prime}\right|_{t=t_{*}}=-g<0$
Substitute $t=t_{*}=\frac{u \sin \theta}{g}$ into

$$
y=u t \sin \theta-0.5 g t^{2}
$$

We obtain

$$
y_{\max }=y\left(t_{*}\right)=\frac{u^{2} \sin ^{2} \theta}{g}-\frac{u^{2} \sin ^{2} \theta}{2 g}=\frac{u^{2} \sin ^{2} \theta}{2 g}
$$

Answer: i) $\frac{d y}{d x}=\tan \theta-\frac{g}{u^{2} \cos ^{2} \theta} x$;
ii) $y_{\text {max }}=\frac{u^{2} \sin ^{2} \theta}{2 g}$.

