Answer on Question #83852 – Math – Differential Equations

Question

A tank contains 100 liters of pure water. Brine that contains 0.1 kg of salt per liter enters the tank at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is the tank after 6 minutes?

Solution

Let x(t) be the mass of salt, in kilograms, that is in the tank at time t. Since the tank is initially filled with fresh water we know that x(0) = 0.

An expression for x'(t) will be given as the rate salt enters the tank minus the rate salt leaves the tank (in kilograms per minute).

$$\begin{aligned} x'(t) &= \frac{dx}{dt} = (rate in) - (rate out) = \\ &= \left(\frac{0.1 \ kg}{1 \ L}\right) \left(10 \frac{L}{min}\right) - \left(\frac{x(t) \ kg}{100 \ L}\right) \left(10 \frac{L}{min}\right) \\ \frac{dx}{dt} &= \frac{10 - x}{10} \\ \frac{dx}{10 - x} &= \frac{1}{10} \ dt \\ \int \frac{dx}{10 - x} &= \frac{1}{10} \ dt \\ \int \frac{dx}{10 - x} &= \frac{1}{10} \ f \ dt \\ -\ln|10 - x| &= \frac{1}{10} \ f \ t + C \\ x(0) &= 0: \ C = -\ln 10 \\ \ln|10 - x| &= \ln 10 - \frac{1}{10} \ t \\ |10 - x| &= 10e^{-t/10} \\ \operatorname{Since} x < 10 \\ 10 - x &= 10e^{-t/10} \\ \operatorname{Since} x &< 10 \\ 10 - x &= 10e^{-t/10} = 10 \left(1 - e^{-t/10}\right) \\ \operatorname{Then} \\ x(6) &= 10 \left(1 - e^{-6/10}\right) = 10 (1 - e^{-0.6}) \ (kg) \\ 10 (1 - e^{-0.6}) \ kg \approx 4.512 \ kg \\ \operatorname{Answer:} 10 (1 - e^{-0.6}) \ kg \approx 4.512 \ kg \end{aligned}$$

Answer provided by https://www.AssignmentExpert.com