Answer on Question \#83852 - Math - Differential Equations

Question

A tank contains 100 liters of pure water. Brine that contains 0.1 kg of salt per liter enters the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is the tank after 6 minutes?

Solution

Let $x(t)$ be the mass of salt, in kilograms, that is in the tank at time t. Since the tank is initially filled with fresh water we know that $x(0)=0$.
An expression for $x^{\prime}(t)$ will be given as the rate salt enters the tank minus the rate salt leaves the tank (in kilograms per minute).
$x^{\prime}(t)=\frac{d x}{d t}=($ rate in $)-($ rate out $)=$
$=\left(\frac{0.1 \mathrm{~kg}}{1 L}\right)\left(10 \frac{L}{\min }\right)-\left(\frac{x(t) \mathrm{kg}}{100 L}\right)\left(10 \frac{L}{\min }\right)$
$\frac{d x}{d t}=\frac{10-x}{10}$
$\frac{d x}{10-x}=\frac{1}{10} d t$
$\int \frac{d x}{10-x}=\frac{1}{10} \int d t$
$-\ln |10-x|=\frac{1}{10} t+C$
$x(0)=0: C=-\ln 10$
$\ln |10-x|=\ln 10-\frac{1}{10} t$
$|10-x|=10 e^{-t / 10}$
Since $x<10$
$10-x=10 e^{-t / 10}$
$x=10-10 e^{-t / 10}=10\left(1-e^{-t / 10}\right)$
Then

$$
x(6)=10\left(1-e^{-6 / 10}\right)=10\left(1-e^{-0.6}\right)(k g)
$$

$10\left(1-e^{-0.6}\right) \mathrm{kg} \approx 4.512 \mathrm{~kg}$
Answer: $10\left(1-e^{-0.6}\right) \mathrm{kg} \approx 4.512 \mathrm{~kg}$

