Answer on Question #83832 – Math – Real Analysis

Question

Show that n!<n^n, n>1, by induction.

Solution

We shall prove it by the method of mathematical induction.

1. Take n = 2 and substitute the inequality, we get: $2!=1\times2=2<2^2=2\times2=4$, i.e. 2<4, therefore the inequality holds.

2. Let it be true for n = k, where $k \ge 2$, i.e. $k! < k^k$.

3. Let us prove the fulfillment of the inequality for n = k + 1, where $k \ge 2$.

We need to show $(k+1)! < (k+1)^{k+1}$, or $k!(k+1) < (k+1)^{k+1}$, or $k! < (k+1)^k$. Transform the right hand side of the inequality as follows: $(k(1+\frac{1}{k}))^k = k^k(1+\frac{1}{k})^k$. We know that

 $\lim_{k \to \infty} \left(1 + \frac{1}{k}\right)^k = e, \text{ i.e. always } 1 < (1 + \frac{1}{k})^k < e. \text{ And, at the same time, we have assumed}$ that k!<k^k, then k! also will be less than k^k $(1 + \frac{1}{k})^k$, and then $(k+1)! < (k+1)^{k+1}$.

4. By the method of mathematical induction, the inequality n!<nⁿ holds for all n>1.