## Answer on Question \#83825 - Math - Statistics and Probability

## Question

A cab taxi company has 12 Santro and 8 Alto cars. If these taxi cabs are in the workshop for repairs and a Santro is as likely to be in for repair as an Alto. What is the probability that,
i) 3 of them are Santro and 2 are Alto.
ii) At least 3 of them are Senators
iii) All the 5 are of the same make?

## Solution

The order of the cars chosen in the workshop for repairs is not important, so this situation is a combination of $(12+8)$ cars taken 5 at a time, and is thus equal to

$$
N=C(20,5)=\frac{20!}{5!(20-5)!}=\frac{20(19)(18)(17)(16)}{1(2)(3)(4)(5)}=15504
$$

i) 3 of them are Santro and 2 are Alto.

Three Santro cars can be taken in the workshop for repairs in $C(12,3)$ ways, and two Alto cars can be taken in the workshop for repairs in $C(8,2)$ ways
$C(12,3) \times C(8,2)=\frac{12!}{3!(12-3)!} \times \frac{8!}{2!(8-2)!}=\frac{12(11)(10)}{1(2)(3)} \times \frac{8(7)}{1(2)}=6160$
The probability that 3 of them are Santro and 2 are Alto is

$$
P(3 \& 2)=\frac{C(12,3) \times C(8,2)}{C(20,5)}
$$

$P(3 \& 2)=\frac{\frac{12!}{3!(12-3)!} \times \frac{8!}{2!(8-2)!}}{\frac{20!}{5!(20-5)!}}=\frac{6160}{15504}=\frac{385}{969} \approx 0.3973$
ii) At least 3 of them are Senators
$P(3 \& 2)+P(4 \& 1)+P(5 \& 0)=$
$=\frac{C(12,3) \times C(8,2)}{C(20,5)}+\frac{C(12,4) \times C(8,1)}{C(20,5)}+\frac{C(12,5) \times C(8,0)}{C(20,5)}$
$C(12,3) \times C(8,2)=\frac{12!}{3!(12-3)!} \times \frac{8!}{2!(8-2)!}=\frac{12(11)(10)}{1(2)(3)} \times \frac{8(7)}{1(2)}=6160$
$C(12,4) \times C(8,1)=\frac{12!}{4!(12-4)!} \times 8=\frac{12(11)(10)(9)}{1(2)(3)(4)} \times 8=3960$
$C(12,5) \times C(8,0)=\frac{12!}{5!(12-5)!} \times 1=\frac{12(11)(10)(9)(8)}{1(2)(3)(4)(5)}=792$
$P(3 \& 2)+P(4 \& 1)+P(5 \& 0)=\frac{6160+3960+792}{15504}=\frac{10912}{15504}=\frac{682}{969} \approx 0.7038$
iii) All the 5 are of the same make
$P(5 \& 0)=\frac{C(12,5) \times C(8,0)}{C(20,5)}=\frac{\frac{12!}{5!(12-5)!} \times 1}{15504}=\frac{792}{15504}$
$P(0 \& 5)=\frac{C(12,0) \times C(8,5)}{C(20,5)}=\frac{1 \times \frac{8!}{5!(8-5)!}}{15504}=\frac{56}{15504}$
$P(5 \& 0)+P(0 \& 5)=\frac{792}{15504}+\frac{56}{15504}=\frac{848}{15504}=\frac{106}{1938} \approx 0.0547$.

