Answer on Question \#83811 - Math - Calculus

Question

A hypothetical square grows so that the lengths of its diagonals are increasing at a rate of $4 \mathrm{~m} / \mathrm{min}$. How fast is the area of the square increasing when the diagonals are 2 m each?

Solution

The diagonal c of the square is related to its side a by the Pythagoras theorem $2 a^{2}=c^{2}$. The area then is $A=a^{2}=c^{2} / 2$. Differentiating this with respect to time, we obtain $\dot{A}=c \dot{c}$. Given that $c=2 \mathrm{~m}$ and $\dot{c}=4 \mathrm{~m} / \mathrm{min}$, we obtain $\dot{A}=8 \mathrm{~m}^{2} / \mathrm{min}$.

Answer: $8 \mathrm{~m}^{2} / \mathrm{min}$.

