Answer on Question #83760 – Math – Discrete Mathematics Question How many 8-bits sequences that start with the same two bits or their fourth and fifth bits are equal or end with the same two bits are there? ## Solution The total number of 8-bit sequences is $2^8 = 256$. Denote N_1 the number of sequences with the stated property. We have $$N_1 = 256 - N_2$$ where N_2 is the number of 8-bit sequences with all different pairs: 1^{st} and 2^{nd} different bits, and 4^{th} and 5^{th} different bits, and 7^{th} and 8^{th} different bits. Calculate N_2 . There are 2 ways to choose the 1^{st} bit, after that the 2^{nd} bit is defined automatically – it is opposite to the 1^{st} . There are 2 ways to choose the 3^{rd} bit, 2 ways to choose the 4^{th} bit – 5^{th} is defined automatically, 2 ways to choose the 6^{th} bit, 2 ways to choose the 7^{th} bit – 8^{th} is defined automatically. So totally there are $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32$ ways, $N_2 = 32$. Then $N_1 = 256 - N_2 = 224$. Answer: 224.