
Answer on Question #83744 – Math – Other

Question

1. In Triangle ABC the angle A is 90° and AC =x. If SinB=x what is sinC=?

Solution

We know that AC = x, sinB = x, A = 90° . We can use the sine theorem:

$$\frac{AC}{sinB} = \frac{BC}{sinA} \leftrightarrow \frac{x}{x} = \frac{BC}{sin90^{\circ}} \leftrightarrow BC = 1$$

Now, we use the Pythagorean theorem:

$$AB^2 = BC^2 - AC^2 = 1 - x^2 \iff AB = \sqrt{1 - x^2}$$

(One must note that the same result can be obtained using the cosine theorem:

$$BC^{2} = AB^{2} + AC^{2} - 2 * AC * AB * cosA \leftrightarrow 1 = AB^{2} + x^{2} - 2 * AB * AC * 0$$

 $AB^2 = 1 - x^2 \leftrightarrow AB = \sqrt{1 - x^2}$)

Using the definition of the sine function

$$sinC = \frac{AB}{BC} = \frac{\sqrt{1-x^2}}{1} = \sqrt{1-x^2}$$

(One must note that sinC can be found using the sine theorem:

$$\frac{AB}{sinC} = \frac{BC}{sinA} \leftrightarrow \frac{\sqrt{1-x^2}}{sinC} = \frac{1}{sin90^\circ} \leftrightarrow sinC = \sqrt{1-x^2}$$

Answer: $sinC = \sqrt{1-x^2}$.

Question

2. -3 < 5 - 2x < 7 express it with modules.

	Solution
	-3 < 5 - 2x < 7
Subtract 5	
	-8 < -2x < 2
Divide by -1	
	8 > 2x > -2
Subtract 3	
	5 > 2x - 3 > -5
Rewrite the last formula as	
	-5 < 2x - 3 < 5

By the definition of the absolute value it is equivalent to

|2x - 3| < 5

Answer provided by https://www.AssignmentExpert.com