Answer on Question \#83693 - Math - Analytic Geometry

Question

Find the equation of the plane through the line $\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-4}{5}$ and parallel to x -axis?

Solution

From the equation of line

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}},(1)
$$

we have
$x_{2}-2=2 ;$
$y_{2}-3=3 ;$
$z_{2}-4=5 ;$
$x_{2}=4$.
$y_{2}=6$.

$$
z_{2}=9
$$

Because the line lies on the plane, the plane also contains points $(2,3,4)$ and $(4,6,9)$.
Consider the plane equation

$$
\begin{gathered}
A x+B y+C z+D=0 \text { (2) } \\
\text { or } \\
\frac{A}{D} x+\frac{B}{D} y+\frac{C}{D} z+1=0 \text { if } D \neq 0
\end{gathered}
$$

($A=0$ because the plane parallel to x -axis) make such a system:
$\left\{\begin{array}{l}3 \frac{B}{D}+4 \frac{C}{D}+1=0 ; \\ 6 \frac{B}{D}+9 \frac{C}{D}+1=0 .\end{array}\right.$

$$
A=0, \frac{B}{D}=-\frac{5}{3} \text { and } \frac{C}{D}=1 \text { (4) }
$$

From (3), (4) it follows that

$$
-\frac{5}{3} y+z+1=0 \text { if } D \neq 0, \text { hence } 5 y-3 z-3=0
$$

Answer: $5 y-3 z-3=0$ is the equation of the plane.

