Answer on Question \#83676 - Math - Analytic Geometry

Question

Find the angle between the line joining the points $(3,-4,-2)$ and $(12,2,0)$ and the plane $3 x-y+z=1$

Solution

Equation of a line that passes through two points $A(3,-4,-2)$ and $B(12,2,0)$:
$\mathrm{AB}: \frac{x-x_{A}}{x_{B}-x_{A}}=\frac{y-y_{A}}{y_{B}-y_{A}}=\frac{z-z_{A}}{z_{B}-z_{A}}$;
$\mathrm{AB}: \quad \frac{x-3}{12-3}=\frac{y+4}{2+4}=\frac{z+2}{0+2}$;
$\mathrm{AB}: \frac{x-3}{9}=\frac{y+4}{6}=\frac{z+2}{2}$.
Then $\overrightarrow{A B}(9,6,2)$ is a direction vector of the straight line.
If the plane is given by the equation $3 x-y+z=1$, then a normal vector of the plane is $\vec{n}(3,-1,1)$.

The angle between the straight line and the normal vector is calculated by the formula:

$$
\begin{aligned}
& \cos (\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{n}})=\frac{\overrightarrow{\mathrm{AB}} \cdot \vec{n}}{|\overrightarrow{A B} \cdot| \vec{n} \mid} ; \\
& \cos (\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{n}})=\frac{9 \cdot 3+6 \cdot(-1)+2 \cdot 1}{\sqrt{9^{2}+6^{2}+2^{2} \cdot \sqrt{3^{2}+(-1)^{2}+1^{2}}} ;} \\
& \cos (\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{n}})=\frac{27-6+2}{\sqrt{81+36+4 \cdot \sqrt{9+1+1}} ;} \\
& \cos (\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{n}})=\frac{23}{\sqrt{121} \cdot \sqrt{11}} ; \\
& \cos (\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{n}})=\frac{23}{11 \sqrt{11}} ; \\
& \cos (\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{n}}) \approx 0.63 ;
\end{aligned}
$$

The angle between the straight line and the plane is calculated by the formula:

$$
\begin{aligned}
& \sin \varphi=|\cos (\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{n}})| ; \\
& \sin \varphi=0.63 \\
& \varphi \approx 50^{\circ} 54^{\prime}
\end{aligned}
$$

Answer: $\varphi \approx 50^{\circ} 54^{\prime}$.

