Answer on Question \#83664 - Math - Calculus

Question

Find the maximum and minimum values of $x^{2}+y^{2}+z^{2}$ subject to the conditions $x+y+z=1$ and $x y z+1=0$ by using Lagrange's multiplier method

Solution

Let $f(x, y, z)=x^{2}+y^{2}+z^{2}, g(x, y, z)=x+y+z-1=0, h(x, y, z)=x y z+1=0$. The gradient vectors for f, g, h are:

$$
\nabla f(x, y, z)=\langle 2 x, 2 y, 2 z\rangle, \quad \nabla g(x, y, z)=\langle 1,1,1\rangle, \quad \nabla h(x, y, z)=(y z, x z, x y) .
$$

According to Lagrange's multiplier method we find all values of x, y, z, λ, μ such that

$$
\begin{gathered}
\nabla L(x, y, z)=\nabla f(x, y, z)+\lambda \nabla g(x, y, z)+\mu \nabla h(x, y, z)=0, \\
g(x, y, z)=0 \\
h(x, y, z)=0 .
\end{gathered}
$$

Where λ, μ are the Lagrange's multipliers.
So consider the system:

$$
\begin{gathered}
2 x+\lambda+\mu y z=0, \\
2 y+\lambda+\mu x z=0, \\
2 z+\lambda+\mu x y=0, \\
x+y+z-1=0, \\
x y z+1=0 .
\end{gathered}
$$

Choose the equations:

$$
\begin{aligned}
& \lambda+\mu y z=-2 x, \\
& \lambda+\mu x z=-2 y .
\end{aligned}
$$

Find λ, μ, using Cramer's rules:

$$
\begin{gathered}
\Delta=\left|\begin{array}{ll}
1 & y z \\
1 & x z
\end{array}\right|=x z-y z=z(x-y) \\
\Delta_{\lambda}=\left|\begin{array}{cc}
-2 x & y z \\
-2 y & x z
\end{array}\right|=-2 x^{2} z+2 y^{2} z=-2 z\left(x^{2}-y^{2}\right) \\
\Delta_{\mu}=\left|\begin{array}{ll}
1 & -2 x \\
1 & -2 y
\end{array}\right|=-2 y+2 x=2(x-y)
\end{gathered}
$$

Consider two cases, when $\Delta=0$, and $\Delta \neq 0$.
If $\Delta=0$, so $z=0$ or $x-y=0$. But $z=0$ don't satisfy the equation $x y z+1=0$. So we have $z \neq 0$.
Consider when $x-y=0$, or $x=y$. So for the equations $x+y+z-1=0, x y z+1=0$ we have:

$$
\begin{gathered}
2 y+z-1=0, \\
y^{2} z+1=0, \\
y^{2}(1-2 y)+1=0 .
\end{gathered}
$$

Solve the equation:

$$
\begin{gathered}
y^{2}-2 y^{3}+1=0 \\
y^{3}-y^{2}+y^{3}-1=0 \\
y^{2}(y-1)+(y-1)\left(y^{2}+y+1\right)=0 \\
(y-1)\left(2 y^{2}+y+1\right)=0 \\
y=1 \text { or } 2 y^{2}+y+1=0
\end{gathered}
$$

So we have $y=x=1, z=-1$. Substitute these values in the equations

$$
\begin{aligned}
& \lambda+\mu y z=-2 x, \\
& \lambda+\mu x y=-2 z .
\end{aligned}
$$

We find λ, μ :

$$
\begin{gathered}
\lambda-\mu=-2 \\
\lambda+\mu=2
\end{gathered}
$$

So $\lambda=0, \mu=2$.
So we have the first point $M_{1}=(1,1,-1)$ and $\lambda_{1}=0, \mu_{1}=2$.
The equation $2 y^{2}+y+1=0$ does not have real roots $(D<0)$.
If $\Delta \neq 0$, we have:

$$
\begin{gathered}
\lambda=\frac{\Delta_{\lambda}}{\Delta}=-\frac{2 z\left(x^{2}-y^{2}\right)}{z(x-y)}=-2(x+y), \\
\mu=\frac{\Delta_{\mu}}{\Delta}=\frac{2(x-y)}{z(x-y)}=\frac{2}{z}
\end{gathered}
$$

Substitute $\lambda=-2(x+y), \mu=\frac{2}{z}$ in the third equation $\lambda+\mu x y=-2 z$:

$$
\begin{aligned}
-2(x+y)+\frac{2}{z} x y & =-2 z \\
z-x-y+\frac{1}{z} x y & =0
\end{aligned}
$$

Use the equations:

$$
\begin{array}{ll}
x+y+z-1=0, & x+y=1-z \\
x y z+1=0, & x y=-\frac{1}{z}
\end{array}
$$

So write the equation $z-x-y+\frac{1}{z} x y=0$:

$$
2 z-\frac{1}{z^{2}}-1=0
$$

We know $z \neq 0$, so we have

$$
\begin{gathered}
2 z^{3}-z^{2}-1=0 \\
(z-1)\left(z^{2}+z+1\right)=0 \\
z=1 \text { or } z^{2}+z+1=0 \text { (has not real roots). }
\end{gathered}
$$

Substitute $z=1$ in the equations $x+y=1-z$,

$$
\begin{gathered}
x+y=1-z, \\
x y=-\frac{1}{z} .
\end{gathered}
$$

We have

$$
\begin{gathered}
x+y=0 \\
x y=-1 .
\end{gathered}
$$

We have the solution: $x=-1, y=1$ and $x=1, y=-1$. And $\lambda=0, \mu=2$.
So we have the points $M_{2}=(-1,1,1), M_{3}=(1,-1,1)$ and and $\lambda_{2}=\lambda_{3}=0, \mu_{2}=\mu_{3}=2$.
For each point $f\left(M_{1}\right)=f\left(M_{2}\right)=f\left(M_{3}\right)=3$. Define if this value is maximum or minimum value. Write

$$
\begin{gathered}
L(x, y, z)=f(x, y, z)+\lambda g(x, y, z)+\mu h(x, y, z) \\
L(x, y, z)=x^{2}+y^{2}+z^{2}+\lambda(x+y+z-1)+\mu(x y z+1) .
\end{gathered}
$$

Then find the matrix:

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
0 & 0 & \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial y} \\
0 & 0 & \frac{\partial h}{\partial x} & \frac{\partial h}{\partial y} & \frac{\partial h}{\partial z} \\
\frac{\partial g}{\partial x} & \frac{\partial h}{\partial x} & \frac{\partial^{2} L}{\partial x^{2}} & \frac{\partial^{2} L}{\partial x \partial y} & \frac{\partial^{2} L}{\partial x \partial z} \\
\frac{\partial g}{\partial y} & \frac{\partial h}{\partial y} & \frac{\partial^{2} L}{\partial y \partial x} & \frac{\partial^{2} L}{\partial y^{2}} & \frac{\partial^{2} L}{\partial y \partial z} \\
\frac{\partial g}{\partial z} & \frac{\partial h}{\partial z} & \frac{\partial^{2} L}{\partial x \partial z} & \frac{\partial^{2} L}{\partial y \partial z} & \frac{\partial^{2} L}{\partial z^{2}}
\end{array}\right) \\
& \frac{\partial g}{\partial x}=\frac{\partial g}{\partial y}=\frac{\partial g}{\partial z}=1, \frac{\partial h}{\partial x}=y z, \frac{\partial h}{\partial y}=x z, \frac{\partial h}{\partial z}=x y . \\
& \frac{\partial L}{\partial x}=2 x+\lambda+\mu y z, \frac{\partial L}{\partial y}=2 y+\lambda+\mu x z, \frac{\partial L}{\partial z}=2 z+\lambda+\mu x y \\
& \frac{\partial^{2} L}{\partial x^{2}}=2, \frac{\partial^{2} L}{\partial y^{2}}=2, \frac{\partial^{2} L}{\partial x^{2}}=2, \frac{\partial^{2} L}{\partial z^{2}}=2, \frac{\partial^{2} L}{\partial x \partial y}=\mu z, \frac{\partial^{2} L}{\partial x \partial z}=\mu y, \frac{\partial^{2} L}{\partial y \partial z}=\mu x .
\end{aligned}
$$

So our matrix is:

$$
\left(\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & y z & x z & x y \\
1 & y z & 2 & \mu z & \mu y \\
1 & x z & \mu z & 2 & \mu x \\
1 & x y & \mu y & \mu x & 2
\end{array}\right)
$$

For the point $M_{1}=(1,1,-1)$ and $\lambda_{1}=0, \mu_{1}=2$ this matrix is:

$$
A=\left(\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & -1 & -1 & 1 \\
1 & -1 & 2 & -2 & 2 \\
1 & -1 & -2 & 2 & 2 \\
1 & 1 & 2 & 2 & 2
\end{array}\right)
$$

If the signs of the corner minors $H_{2 m+1}, H_{2 m+2}, \ldots H_{m+n}$ of the matrix A equal the signs of $(-1)^{m}$, then the stationary point is minima of the objective function. If the signs of the corner minors $H_{2 m+1,}, H_{2 m+2}, \ldots H_{m+n}$ of the matrix A interchange, besides the sign of $H_{2 m+1}$, equals the sign of $(-1)^{m+1}$, then the stationary point is maxima of the objective function. Here m is the number of the conditions and n is the number of the variables. In our case $m=2, n=3$. So we define the sign $H_{2 m+1}=H_{m+n}=H_{5}=\operatorname{det} A$.

$$
\begin{aligned}
& \operatorname{det} A=\left|\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & -1 & -1 & 1 \\
1 & -1 & 2 & -2 & 2 \\
1 & -1 & -2 & 2 & 2 \\
1 & 1 & 2 & 2 & 2
\end{array}\right|=R_{4} \rightarrow R_{4}-R_{3}, R_{5} \rightarrow R_{5}-R_{3}=\left|\begin{array}{ccccc}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & -1 & -1 & 1 \\
1 & -1 & 2 & -2 & 2 \\
0 & 0 & -4 & 4 & 0 \\
0 & 2 & 0 & 4 & 0
\end{array}\right|= \\
& \left|\begin{array}{ccccc}
1 & -1 & 2 & -2 & 2 \\
0 & 2 & 0 & 4 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & -4 & 4 & 0 \\
0 & 0 & -1 & -1 & 1
\end{array}\right|=R_{4} \rightarrow R_{4}+4 R_{3}, R_{5} \rightarrow R_{5}+R_{3}=\left|\begin{array}{ccccc}
1 & -1 & 2 & -2 & 2 \\
0 & 2 & 0 & 4 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 8 & 4 \\
0 & 0 & 0 & 0 & 2
\end{array}\right|=1 \cdot 2 \cdot 1 \cdot 8 \cdot 2=32>0
\end{aligned}
$$

The sign $H_{5}>0$, and the sign $(-1)^{2}>0$, so for $M_{1}=(1,1,-1)$ the function $f(x, y, z)$ has minimum value $f(1,1,-1)=3$.

Thus, we have that the minimum value of f is 3 . According to the given conditions the function f does not have the maximum value.

Answer: the minimum value of f is 3 ; the maximum value of f does not exist.

