Answer on Question \#83608 - Math - Calculus

Question

Let $F(x)=\left\{\begin{array}{l}-1, x<0 \\ 0, \\ 1, x=0 .\end{array}\right.$. Find $\lim _{x \rightarrow 0} F(x)$.

Solution

Let $x_{n}=-\frac{1}{n}, n \in \mathbb{N}$, is a sequence of real numbers. Then $\lim _{n \rightarrow \infty} x_{n}=0$, and
$L_{1}=\lim _{x_{n} \rightarrow 0} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty}(-1)=-1$.
Let $y_{n}=\frac{1}{n^{\prime}} n \in \mathbb{N}$, is another sequence of real numbers. Then $\lim _{n \rightarrow \infty} y_{n}=0$, and $L_{2}=\lim _{y_{n} \rightarrow 0} f\left(y_{n}\right)=\lim _{n \rightarrow \infty} f\left(y_{n}\right)=\lim _{n \rightarrow \infty}(1)=1$.
Since the limits L_{1} and L_{2} are not equal, the limit of the function $F(x)$ as x tends to 0 does not exist. It is undefined by Heine's definition of the limit of a function.

Answer: $\lim _{x \rightarrow 0} F(x)$ does not exist.

