Question

Let $F(x) = \begin{cases} -1, \ x < 0 \\ 0, \ x = 0 \\ 1, \ x > 0 \end{cases}$ Find $\lim_{x \to 0} F(x)$.

Solution

Let $x_n = -\frac{1}{n}$, $n \in \mathbb{N}$, is a sequence of real numbers. Then $\lim_{n \to \infty} x_n = 0$, and $L_1 = \lim_{x_n \to 0} f(x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} (-1) = -1$. Let $y_n = \frac{1}{n}$, $n \in \mathbb{N}$, is another sequence of real numbers. Then $\lim_{n \to \infty} y_n = 0$, and $L_2 = \lim_{y_n \to 0} f(y_n) = \lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} (1) = 1$. Since the limits L_1 and L_2 are not equal, the limit of the function F(x) as x tends to 0 does not

exist. It is undefined by Heine's definition of the limit of a function.

<u>Answer:</u> $\lim_{x\to 0} F(x)$ does not exist.

Answer provided by https://www.AssignmentExpert.com