Multiplication of matrices is not commutative (in general):

$$
A B \neq B A
$$

First of all because AB and BA may not be simultaneously define.
For multiplication AB number of columns in A must be equal to the number of rows in B. So we will have problem if we want multiply BA.
Example 1

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \quad B=\left(\begin{array}{ccc}
5 & 6 & 7 \\
8 & 9 & 10
\end{array}\right)
$$

AB : in $\mathrm{A}-2$ columns, in $\mathrm{B}-2$ rows. The result AB of their multiplication is a 3×3 matrix
BA: in B-3 columns, in A -2 rows. So multiplication BA not defined.

If $A B$ and $B A$ both simultaneously defined, we have next situation:
Example 2:
$A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right) \quad B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Then

$$
\mathrm{AB}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{a}+2 \mathrm{c} & \mathrm{~b}+2 \mathrm{~d} \\
3 \mathrm{a}+4 \mathrm{c} & 3 \mathrm{~b}+4 \mathrm{~d}
\end{array}\right)
$$

But

$$
\begin{gathered}
B A=\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{a}+3 \mathrm{~b} & 2 \mathrm{a}+4 \mathrm{~b} \\
\mathrm{c}+3 \mathrm{~d} & 2 \mathrm{c}+4 \mathrm{~d}
\end{array}\right) \\
A B \neq B A
\end{gathered}
$$

So multiplication of matrices is not commutative.

