Answer on Question \#83505 - Math - Linear Algebra

Question

Check whether or not the matrix
$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & -2 & 2 \\ 0 & -2 & -3\end{array}\right]$
is diagonalizable. If it is, find a matrix P , and a matrix D such that $P^{-1} A P=D$. If A is not diagonalizable find $\operatorname{Adj} A$.

Solution

Matrix $A(3 \times 3)$ is diagonalizable if and only if there is a basis of R^{3} consisting of eigenvectors of A. So let's find the eigenvalues and eigenvectors for matrix A .

To define the eigenvalues, we find the values of λ which satisfy the characteristic equation of the matrix A:

$$
\operatorname{det}(A-\lambda I)=0,
$$

where I is the 3×3 identity matrix.
Form the matrix $A-\lambda I$:
$A-\lambda I==\left[\begin{array}{ccc}1-\lambda & 1 & 1 \\ 0 & -2-\lambda & 2 \\ 0 & -2 & -3-\lambda\end{array}\right]$.
Calculate det $(A-\lambda I)$. We define the determinant of a 3×3 matrix by the rule:

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| . \\
& \operatorname{det}(A-\lambda I)=(1-\lambda)\left|\begin{array}{cc}
-2-\lambda & 2 \\
-2 & -3-\lambda
\end{array}\right|-1\left|\begin{array}{cc}
0 & 2 \\
0 & -3-\lambda
\end{array}\right|+1\left|\begin{array}{cc}
0 & -2-\lambda \\
0 & -2
\end{array}\right|= \\
& =(1-\lambda)((-2-\lambda)(-3-\lambda)-(-2) 2)=(1-\lambda)\left(6+5 \lambda+\lambda^{2}+4\right) \\
& =(1-\lambda)\left(\lambda^{2}+5 \lambda+10\right)
\end{aligned}
$$

Then find solutions of the characteristic equation $\operatorname{det}(A-\lambda I)=0$, i.e. solve the equation:

$$
\begin{gathered}
(1-\lambda)\left(\lambda^{2}+5 \lambda+10\right)=0 \\
1-\lambda=0 \text { or } \lambda^{2}+5 \lambda+10=0 \\
\lambda_{1}=1
\end{gathered}
$$

The quadratic equation $\lambda^{2}+5 \lambda+10=0$ has not any real roots, because

$$
\Delta=b^{2}-4 a c=25-40=15<0
$$

So we can find only one eigenvector for A . But any basis for R^{3} consists of three vectors. Therefore, there is no eigenbasis for A , and so the matrix A is not diagonalizable.

Find $\operatorname{Adj} A$. First, calculate the cofactors of each element.

$$
\begin{aligned}
& c_{11}=(-1)^{1+1}\left|\begin{array}{cc}
-2 & 2 \\
-2 & -3
\end{array}\right|=6+4=10, c_{12}=(-1)^{1+2}\left|\begin{array}{cc}
0 & 2 \\
0 & -3
\end{array}\right|=0, \\
& c_{13}=(-1)^{1+3}\left|\begin{array}{cc}
0 & -2 \\
0 & -2
\end{array}\right|=0, \quad c_{21}=(-1)^{2+1}\left|\begin{array}{cc}
1 & 1 \\
-2 & -3
\end{array}\right|=-1(-3+2)=1, \\
& c_{22}=(-1)^{2+2}\left|\begin{array}{cc}
1 & 1 \\
0 & -3
\end{array}\right|=-3, \quad c_{23}=(-1)^{2+3}\left|\begin{array}{cc}
1 & 1 \\
0 & -2
\end{array}\right|=-1(-2)=2, \\
& c_{31}=(-1)^{3+1}\left|\begin{array}{cc}
1 & 1 \\
-2 & 2
\end{array}\right|=2+2=4, c_{32}=(-1)^{3+2}\left|\begin{array}{cc}
1 & 1 \\
0 & 2
\end{array}\right|=-1(2)=-2, \\
& c_{33}=(-1)^{3+3}\left|\begin{array}{cc}
1 & 1 \\
0 & -2
\end{array}\right|=-2 .
\end{aligned}
$$

Write the cofactor matrix C:

$$
C=\left[\begin{array}{ccc}
10 & 0 & 0 \\
1 & -3 & 2 \\
4 & -2 & -2
\end{array}\right], \operatorname{adj} A=C^{T}=\left[\begin{array}{ccc}
10 & 1 & 4 \\
0 & -3 & -2 \\
0 & 2 & -2
\end{array}\right]
$$

Answer: A is not diagonalizable; adj $A=\left[\begin{array}{ccc}10 & 1 & 4 \\ 0 & -3 & -2 \\ 0 & 2 & -2\end{array}\right]$.

