Answer on Question \#83464 - Math - Statistics and Probability

Question

Packets of milk powder produced by a machine were found to have a normal distribution with a mean mass of 650 g and a standard deviation of 10 g .
(a) Find the probability that a packet selected at random will have a mass between 620 g and 655 g .
(b) If 500 packets are selected at random, how many of them will have a mass of more than 660g?
(c) It is found that 10% packets of milk powder will have a mass of less than k grams. Calculate k .

Solution

(a)

If X is a normally distributed random variable with mean μ and standard deviation σ, then the probability that a randomly chosen value of x will be greater than a, and less than b, is equal to
$P(a, b \mid \mu, \sigma)=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right)$,
where $\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{t^{2}}{2}} d t$ is the cumulative distribution function of the standard normal distribution.
Thus,
$P(620,655 \mid \mu=650, \sigma=10)=\Phi\left(\frac{655-650}{10}\right)-\Phi\left(\frac{620-650}{10}\right)=0.691462-0.00135=$ $=0.690113$
(In Excel $\Phi\left(\frac{655-650}{10}\right)-\Phi\left(\frac{620-650}{10}\right)=\operatorname{NORMDIST}(655 ; 650 ; 10 ; 1)-$ NORMDIST(620;650;10;1))

(b)

This value is calculated by the formula

$$
N=n^{*} P(x>c \mid \mu, \sigma)=n\left(1-\Phi\left(\frac{c-\mu}{\sigma}\right)\right)
$$

where $n=500, \mathrm{c}=660$.
Thus,
$N=500 *\left(1-\Phi\left(\frac{660-650}{10}\right)\right)=500 *(1-0.841345)=500 * 0.158655=79$
(In Excel $\Phi\left(\frac{660-650}{10}\right)=\operatorname{NORMDIST}(660 ; 650 ; 10 ; 1)$)
(c)

The value of k is found from the formula $\Phi\left(\frac{k-\mu}{\sigma}\right)=0.1$:
$\frac{k-\mu}{\sigma}=\Phi^{-1}(0.1) ;$
$k=\sigma \Phi^{-1}(0.1)+\mu ;$
$k=10 *(-1.28155)+650=637$
(In Excel $\left.\Phi^{-1}(0.1)=\operatorname{NORMSINV}(0.1)\right)$.

Answer:

(a) The probability that a packet selected at random will have a mass between 620 g and 655 g is equal to 0.690113 .
(b) If 500 packets are selected at random, that 79 of them will have a mass of more than 660 g .
(c) $k=637 \mathrm{~g}$

